Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,285 Bytes
d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
import importlib
from inspect import isfunction
import itertools
import logging
import math
import os
import safetensors.torch
import torch
def append_dims(x: torch.Tensor, target_dims: int) -> torch.Tensor:
"""#### Appends dimensions to the end of a tensor until it has target_dims dimensions.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `target_dims` (int): The target number of dimensions.
#### Returns:
- `torch.Tensor`: The expanded tensor.
"""
dims_to_append = target_dims - x.ndim
expanded = x[(...,) + (None,) * dims_to_append]
return expanded.detach().clone() if expanded.device.type == "mps" else expanded
def to_d(x: torch.Tensor, sigma: torch.Tensor, denoised: torch.Tensor) -> torch.Tensor:
"""#### Convert a tensor to a denoised tensor.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `sigma` (torch.Tensor): The noise level.
- `denoised` (torch.Tensor): The denoised tensor.
#### Returns:
- `torch.Tensor`: The converted tensor.
"""
return (x - denoised) / append_dims(sigma, x.ndim)
def load_torch_file(ckpt: str, safe_load: bool = False, device: str = None) -> dict:
"""#### Load a PyTorch checkpoint file.
#### Args:
- `ckpt` (str): The path to the checkpoint file.
- `safe_load` (bool, optional): Whether to use safe loading. Defaults to False.
- `device` (str, optional): The device to load the checkpoint on. Defaults to None.
#### Returns:
- `dict`: The loaded checkpoint.
"""
if device is None:
device = torch.device("cpu")
if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"):
sd = safetensors.torch.load_file(ckpt, device=device.type)
else:
if safe_load:
if "weights_only" not in torch.load.__code__.co_varnames:
logging.warning(
"Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely."
)
safe_load = False
if safe_load:
pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
else:
pl_sd = torch.load(ckpt, map_location=device)
if "global_step" in pl_sd:
logging.debug(f"Global Step: {pl_sd['global_step']}")
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:
sd = pl_sd
return sd
def calculate_parameters(sd: dict, prefix: str = "") -> dict:
"""#### Calculate the parameters of a state dictionary.
#### Args:
- `sd` (dict): The state dictionary.
- `prefix` (str, optional): The prefix for the parameters. Defaults to "".
#### Returns:
- `dict`: The calculated parameters.
"""
params = 0
for k in sd.keys():
if k.startswith(prefix):
params += sd[k].nelement()
return params
def state_dict_prefix_replace(
state_dict: dict, replace_prefix: str, filter_keys: bool = False
) -> dict:
"""#### Replace the prefix of keys in a state dictionary.
#### Args:
- `state_dict` (dict): The state dictionary.
- `replace_prefix` (str): The prefix to replace.
- `filter_keys` (bool, optional): Whether to filter keys. Defaults to False.
#### Returns:
- `dict`: The updated state dictionary.
"""
if filter_keys:
out = {}
else:
out = state_dict
for rp in replace_prefix:
replace = list(
map(
lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp) :])),
filter(lambda a: a.startswith(rp), state_dict.keys()),
)
)
for x in replace:
w = state_dict.pop(x[0])
out[x[1]] = w
return out
def lcm_of_list(numbers):
"""Calculate LCM of a list of numbers more efficiently."""
if not numbers:
return 1
result = numbers[0]
for num in numbers[1:]:
result = torch.lcm(torch.tensor(result), torch.tensor(num)).item()
return result
def repeat_to_batch_size(
tensor: torch.Tensor, batch_size: int, dim: int = 0
) -> torch.Tensor:
"""#### Repeat a tensor to match a specific batch size.
#### Args:
- `tensor` (torch.Tensor): The input tensor.
- `batch_size` (int): The target batch size.
- `dim` (int, optional): The dimension to repeat. Defaults to 0.
#### Returns:
- `torch.Tensor`: The repeated tensor.
"""
if tensor.shape[dim] > batch_size:
return tensor.narrow(dim, 0, batch_size)
elif tensor.shape[dim] < batch_size:
return tensor.repeat(
dim * [1]
+ [math.ceil(batch_size / tensor.shape[dim])]
+ [1] * (len(tensor.shape) - 1 - dim)
).narrow(dim, 0, batch_size)
return tensor
def set_attr(obj: object, attr: str, value: any) -> any:
"""#### Set an attribute of an object.
#### Args:
- `obj` (object): The object.
- `attr` (str): The attribute name.
- `value` (any): The value to set.
#### Returns:
- `prev`: The previous attribute value.
"""
attrs = attr.split(".")
for name in attrs[:-1]:
obj = getattr(obj, name)
prev = getattr(obj, attrs[-1])
setattr(obj, attrs[-1], value)
return prev
def set_attr_param(obj: object, attr: str, value: any) -> any:
"""#### Set an attribute parameter of an object.
#### Args:
- `obj` (object): The object.
- `attr` (str): The attribute name.
- `value` (any): The value to set.
#### Returns:
- `prev`: The previous attribute value.
"""
return set_attr(obj, attr, torch.nn.Parameter(value, requires_grad=False))
def copy_to_param(obj: object, attr: str, value: any) -> None:
"""#### Copy a value to a parameter of an object.
#### Args:
- `obj` (object): The object.
- `attr` (str): The attribute name.
- `value` (any): The value to set.
"""
attrs = attr.split(".")
for name in attrs[:-1]:
obj = getattr(obj, name)
prev = getattr(obj, attrs[-1])
prev.data.copy_(value)
def get_obj_from_str(string: str, reload: bool = False) -> object:
"""#### Get an object from a string.
#### Args:
- `string` (str): The string.
- `reload` (bool, optional): Whether to reload the module. Defaults to False.
#### Returns:
- `object`: The object.
"""
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def get_attr(obj: object, attr: str) -> any:
"""#### Get an attribute of an object.
#### Args:
- `obj` (object): The object.
- `attr` (str): The attribute name.
#### Returns:
- `obj`: The attribute value.
"""
attrs = attr.split(".")
for name in attrs:
obj = getattr(obj, name)
return obj
def lcm(a: int, b: int) -> int:
"""#### Calculate the least common multiple (LCM) of two numbers.
#### Args:
- `a` (int): The first number.
- `b` (int): The second number.
#### Returns:
- `int`: The LCM of the two numbers.
"""
return abs(a * b) // math.gcd(a, b)
def get_full_path(folder_name: str, filename: str) -> str:
"""#### Get the full path of a file in a folder.
Args:
folder_name (str): The folder name.
filename (str): The filename.
Returns:
str: The full path of the file.
"""
global folder_names_and_paths
folders = folder_names_and_paths[folder_name]
filename = os.path.relpath(os.path.join("/", filename), "/")
for x in folders[0]:
full_path = os.path.join(x, filename)
if os.path.isfile(full_path):
return full_path
def zero_module(module: torch.nn.Module) -> torch.nn.Module:
"""#### Zero out the parameters of a module.
#### Args:
- `module` (torch.nn.Module): The module.
#### Returns:
- `torch.nn.Module`: The zeroed module.
"""
for p in module.parameters():
p.detach().zero_()
return module
def append_zero(x: torch.Tensor) -> torch.Tensor:
"""#### Append a zero to the end of a tensor.
#### Args:
- `x` (torch.Tensor): The input tensor.
#### Returns:
- `torch.Tensor`: The tensor with a zero appended.
"""
return torch.cat([x, x.new_zeros([1])])
def exists(val: any) -> bool:
"""#### Check if a value exists.
#### Args:
- `val` (any): The value.
#### Returns:
- `bool`: Whether the value exists.
"""
return val is not None
def default(val: any, d: any) -> any:
"""#### Get the default value of a variable.
#### Args:
- `val` (any): The value.
- `d` (any): The default value.
#### Returns:
- `any`: The default value if the value does not exist.
"""
if exists(val):
return val
return d() if isfunction(d) else d
def write_parameters_to_file(
prompt_entry: str, neg: str, width: int, height: int, cfg: int
) -> None:
"""#### Write parameters to a file.
#### Args:
- `prompt_entry` (str): The prompt entry.
- `neg` (str): The negative prompt entry.
- `width` (int): The width.
- `height` (int): The height.
- `cfg` (int): The CFG.
"""
with open("./_internal/prompt.txt", "w") as f:
f.write(f"prompt: {prompt_entry}")
f.write(f"neg: {neg}")
f.write(f"w: {int(width)}\n")
f.write(f"h: {int(height)}\n")
f.write(f"cfg: {int(cfg)}\n")
def load_parameters_from_file() -> tuple:
"""#### Load parameters from a file.
#### Returns:
- `str`: The prompt entry.
- `str`: The negative prompt entry.
- `int`: The width.
- `int`: The height.
- `int`: The CFG.
"""
with open("./_internal/prompt.txt", "r") as f:
lines = f.readlines()
parameters = {}
for line in lines:
# Skip empty lines
if line.strip() == "":
continue
key, value = line.split(": ")
parameters[key] = value.strip()
prompt = parameters["prompt"]
neg = parameters["neg"]
width = int(parameters["w"])
height = int(parameters["h"])
cfg = int(parameters["cfg"])
return prompt, neg, width, height, cfg
PROGRESS_BAR_ENABLED = True
PROGRESS_BAR_HOOK = None
class ProgressBar:
"""#### Class representing a progress bar."""
def __init__(self, total: int):
global PROGRESS_BAR_HOOK
self.total = total
self.current = 0
self.hook = PROGRESS_BAR_HOOK
def get_tiled_scale_steps(
width: int, height: int, tile_x: int, tile_y: int, overlap: int
) -> int:
"""#### Get the number of steps for tiled scaling.
#### Args:
- `width` (int): The width.
- `height` (int): The height.
- `tile_x` (int): The tile width.
- `tile_y` (int): The tile height.
- `overlap` (int): The overlap.
#### Returns:
- `int`: The number of steps.
"""
rows = 1 if height <= tile_y else math.ceil((height - overlap) / (tile_y - overlap))
cols = 1 if width <= tile_x else math.ceil((width - overlap) / (tile_x - overlap))
return rows * cols
@torch.inference_mode()
def tiled_scale_multidim(
samples: torch.Tensor,
function,
tile: tuple = (64, 64),
overlap: int = 8,
upscale_amount: int = 4,
out_channels: int = 3,
output_device: str = "cpu",
downscale: bool = False,
index_formulas: any = None,
pbar: any = None,
):
"""#### Scale an image using a tiled approach.
#### Args:
- `samples` (torch.Tensor): The input samples.
- `function` (function): The scaling function.
- `tile` (tuple, optional): The tile size. Defaults to (64, 64).
- `overlap` (int, optional): The overlap. Defaults to 8.
- `upscale_amount` (int, optional): The upscale amount. Defaults to 4.
- `out_channels` (int, optional): The number of output channels. Defaults to 3.
- `output_device` (str, optional): The output device. Defaults to "cpu".
- `downscale` (bool, optional): Whether to downscale. Defaults to False.
- `index_formulas` (any, optional): The index formulas. Defaults to None.
- `pbar` (any, optional): The progress bar. Defaults to None.
#### Returns:
- `torch.Tensor`: The scaled image.
"""
dims = len(tile)
if not (isinstance(upscale_amount, (tuple, list))):
upscale_amount = [upscale_amount] * dims
if not (isinstance(overlap, (tuple, list))):
overlap = [overlap] * dims
if index_formulas is None:
index_formulas = upscale_amount
if not (isinstance(index_formulas, (tuple, list))):
index_formulas = [index_formulas] * dims
def get_upscale(dim: int, val: int) -> int:
"""#### Get the upscale value.
#### Args:
- `dim` (int): The dimension.
- `val` (int): The value.
#### Returns:
- `int`: The upscaled value.
"""
up = upscale_amount[dim]
if callable(up):
return up(val)
else:
return up * val
def get_downscale(dim: int, val: int) -> int:
"""#### Get the downscale value.
#### Args:
- `dim` (int): The dimension.
- `val` (int): The value.
#### Returns:
- `int`: The downscaled value.
"""
up = upscale_amount[dim]
if callable(up):
return up(val)
else:
return val / up
def get_upscale_pos(dim: int, val: int) -> int:
"""#### Get the upscaled position.
#### Args:
- `dim` (int): The dimension.
- `val` (int): The value.
#### Returns:
- `int`: The upscaled position.
"""
up = index_formulas[dim]
if callable(up):
return up(val)
else:
return up * val
def get_downscale_pos(dim: int, val: int) -> int:
"""#### Get the downscaled position.
#### Args:
- `dim` (int): The dimension.
- `val` (int): The value.
#### Returns:
- `int`: The downscaled position.
"""
up = index_formulas[dim]
if callable(up):
return up(val)
else:
return val / up
if downscale:
get_scale = get_downscale
get_pos = get_downscale_pos
else:
get_scale = get_upscale
get_pos = get_upscale_pos
def mult_list_upscale(a: list) -> list:
"""#### Multiply a list by the upscale amount.
#### Args:
- `a` (list): The list.
#### Returns:
- `list`: The multiplied list.
"""
out = []
for i in range(len(a)):
out.append(round(get_scale(i, a[i])))
return out
output = torch.empty(
[samples.shape[0], out_channels] + mult_list_upscale(samples.shape[2:]),
device=output_device,
)
for b in range(samples.shape[0]):
s = samples[b : b + 1]
# handle entire input fitting in a single tile
if all(s.shape[d + 2] <= tile[d] for d in range(dims)):
output[b : b + 1] = function(s).to(output_device)
if pbar is not None:
pbar.update(1)
continue
out = torch.zeros(
[s.shape[0], out_channels] + mult_list_upscale(s.shape[2:]),
device=output_device,
)
out_div = torch.zeros(
[s.shape[0], out_channels] + mult_list_upscale(s.shape[2:]),
device=output_device,
)
positions = [
range(0, s.shape[d + 2] - overlap[d], tile[d] - overlap[d])
if s.shape[d + 2] > tile[d]
else [0]
for d in range(dims)
]
for it in itertools.product(*positions):
s_in = s
upscaled = []
for d in range(dims):
pos = max(0, min(s.shape[d + 2] - overlap[d], it[d]))
l = min(tile[d], s.shape[d + 2] - pos)
s_in = s_in.narrow(d + 2, pos, l)
upscaled.append(round(get_pos(d, pos)))
ps = function(s_in).to(output_device)
mask = torch.ones_like(ps)
for d in range(2, dims + 2):
feather = round(get_scale(d - 2, overlap[d - 2]))
if feather >= mask.shape[d]:
continue
for t in range(feather):
a = (t + 1) / feather
mask.narrow(d, t, 1).mul_(a)
mask.narrow(d, mask.shape[d] - 1 - t, 1).mul_(a)
o = out
o_d = out_div
for d in range(dims):
o = o.narrow(d + 2, upscaled[d], mask.shape[d + 2])
o_d = o_d.narrow(d + 2, upscaled[d], mask.shape[d + 2])
o.add_(ps * mask)
o_d.add_(mask)
if pbar is not None:
pbar.update(1)
output[b : b + 1] = out / out_div
return output
def tiled_scale(
samples: torch.Tensor,
function,
tile_x: int = 64,
tile_y: int = 64,
overlap: int = 8,
upscale_amount: int = 4,
out_channels: int = 3,
output_device: str = "cpu",
pbar: any = None,
):
"""#### Scale an image using a tiled approach.
#### Args:
- `samples` (torch.Tensor): The input samples.
- `function` (function): The scaling function.
- `tile_x` (int, optional): The tile width. Defaults to 64.
- `tile_y` (int, optional): The tile height. Defaults to 64.
- `overlap` (int, optional): The overlap. Defaults to 8.
- `upscale_amount` (int, optional): The upscale amount. Defaults to 4.
- `out_channels` (int, optional): The number of output channels. Defaults to 3.
- `output_device` (str, optional): The output device. Defaults to "cpu".
- `pbar` (any, optional): The progress bar. Defaults to None.
#### Returns:
- The scaled image.
"""
return tiled_scale_multidim(
samples,
function,
(tile_y, tile_x),
overlap=overlap,
upscale_amount=upscale_amount,
out_channels=out_channels,
output_device=output_device,
pbar=pbar,
)
|