File size: 7,303 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d117d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from typing import Dict, Tuple
import torch
from modules.Device import Device
from modules.Utilities import util

class LatentFormat:
    """#### Base class for latent formats.



    #### Attributes:

        - `scale_factor` (float): The scale factor for the latent format.



    #### Returns:

        - `LatentFormat`: A latent format object.

    """

    scale_factor: float = 1.0
    latent_channels: int = 4
    
    def process_in(self, latent: torch.Tensor) -> torch.Tensor:
        """#### Process the latent input, by multiplying it by the scale factor.



        #### Args:

            - `latent` (torch.Tensor): The latent tensor.



        #### Returns:

            - `torch.Tensor`: The processed latent tensor.

        """
        return latent * self.scale_factor

    def process_out(self, latent: torch.Tensor) -> torch.Tensor:
        """#### Process the latent output, by dividing it by the scale factor.



        #### Args:

            - `latent` (torch.Tensor): The latent tensor.



        #### Returns:

            - `torch.Tensor`: The processed latent tensor.

        """
        return latent / self.scale_factor

class SD15(LatentFormat):
    """#### SD15 latent format.



    #### Args:

        - `LatentFormat` (LatentFormat): The base latent format class.

    """
    latent_channels: int = 4
    def __init__(self, scale_factor: float = 0.18215):
        """#### Initialize the SD15 latent format.



        #### Args:

            - `scale_factor` (float, optional): The scale factor. Defaults to 0.18215.

        """
        self.scale_factor = scale_factor
        self.latent_rgb_factors = [
            #   R        G        B
            [0.3512, 0.2297, 0.3227],
            [0.3250, 0.4974, 0.2350],
            [-0.2829, 0.1762, 0.2721],
            [-0.2120, -0.2616, -0.7177],
        ]
        self.taesd_decoder_name = "taesd_decoder"
        
class SD3(LatentFormat):
    latent_channels = 16

    def __init__(self):
        """#### Initialize the SD3 latent format."""
        self.scale_factor = 1.5305
        self.shift_factor = 0.0609
        self.latent_rgb_factors = [
            [-0.0645, 0.0177, 0.1052],
            [0.0028, 0.0312, 0.0650],
            [0.1848, 0.0762, 0.0360],
            [0.0944, 0.0360, 0.0889],
            [0.0897, 0.0506, -0.0364],
            [-0.0020, 0.1203, 0.0284],
            [0.0855, 0.0118, 0.0283],
            [-0.0539, 0.0658, 0.1047],
            [-0.0057, 0.0116, 0.0700],
            [-0.0412, 0.0281, -0.0039],
            [0.1106, 0.1171, 0.1220],
            [-0.0248, 0.0682, -0.0481],
            [0.0815, 0.0846, 0.1207],
            [-0.0120, -0.0055, -0.0867],
            [-0.0749, -0.0634, -0.0456],
            [-0.1418, -0.1457, -0.1259],
        ]
        self.taesd_decoder_name = "taesd3_decoder"

    def process_in(self, latent: torch.Tensor) -> torch.Tensor:
        """#### Process the latent input, by multiplying it by the scale factor and subtracting the shift factor.

        

        #### Args:

            - `latent` (torch.Tensor): The latent tensor.

            

        #### Returns:

            - `torch.Tensor`: The processed latent tensor.

        """
        return (latent - self.shift_factor) * self.scale_factor

    def process_out(self, latent: torch.Tensor) -> torch.Tensor:
        """#### Process the latent output, by dividing it by the scale factor and adding the shift factor.

        

        #### Args:

            - `latent` (torch.Tensor): The latent tensor.

        

        #### Returns:

            - `torch.Tensor`: The processed latent tensor.

        """
        return (latent / self.scale_factor) + self.shift_factor


class Flux1(SD3):
    latent_channels = 16

    def __init__(self):
        """#### Initialize the Flux1 latent format."""
        self.scale_factor = 0.3611
        self.shift_factor = 0.1159
        self.latent_rgb_factors = [
            [-0.0404, 0.0159, 0.0609],
            [0.0043, 0.0298, 0.0850],
            [0.0328, -0.0749, -0.0503],
            [-0.0245, 0.0085, 0.0549],
            [0.0966, 0.0894, 0.0530],
            [0.0035, 0.0399, 0.0123],
            [0.0583, 0.1184, 0.1262],
            [-0.0191, -0.0206, -0.0306],
            [-0.0324, 0.0055, 0.1001],
            [0.0955, 0.0659, -0.0545],
            [-0.0504, 0.0231, -0.0013],
            [0.0500, -0.0008, -0.0088],
            [0.0982, 0.0941, 0.0976],
            [-0.1233, -0.0280, -0.0897],
            [-0.0005, -0.0530, -0.0020],
            [-0.1273, -0.0932, -0.0680],
        ]
        self.taesd_decoder_name = "taef1_decoder"

    def process_in(self, latent: torch.Tensor) -> torch.Tensor:
        """#### Process the latent input, by multiplying it by the scale factor and subtracting the shift factor.

        

        #### Args:

            - `latent` (torch.Tensor): The latent tensor.

            

        #### Returns:

            - `torch.Tensor`: The processed latent tensor.

        """
        return (latent - self.shift_factor) * self.scale_factor

    def process_out(self, latent: torch.Tensor) -> torch.Tensor:
        """#### Process the latent output, by dividing it by the scale factor and adding the shift factor.

        

        #### Args:

            - `latent` (torch.Tensor): The latent tensor.

        

        #### Returns:

            - `torch.Tensor`: The processed latent tensor.

        """
        return (latent / self.scale_factor) + self.shift_factor

class EmptyLatentImage:
    """#### A class to generate an empty latent image.



    #### Args:

        - `Device` (Device): The device to use for the latent image.

    """

    def __init__(self):
        """#### Initialize the EmptyLatentImage class."""
        self.device = Device.intermediate_device()

    def generate(

        self, width: int, height: int, batch_size: int = 1

    ) -> Tuple[Dict[str, torch.Tensor]]:
        """#### Generate an empty latent image



        #### Args:

            - `width` (int): The width of the latent image.

            - `height` (int): The height of the latent image.

            - `batch_size` (int, optional): The batch size. Defaults to 1.



        #### Returns:

            - `Tuple[Dict[str, torch.Tensor]]`: The generated latent image.

        """
        latent = torch.zeros(
            [batch_size, 4, height // 8, width // 8], device=self.device
        )
        return ({"samples": latent},)

def fix_empty_latent_channels(model, latent_image):
    """#### Fix the empty latent image channels.

    

    #### Args:

        - `model` (Model): The model object.

        - `latent_image` (torch.Tensor): The latent image.

        

    #### Returns:

        - `torch.Tensor`: The fixed latent image.

    """
    latent_channels = model.get_model_object(
        "latent_format"
    ).latent_channels  # Resize the empty latent image so it has the right number of channels
    if (
        latent_channels != latent_image.shape[1]
        and torch.count_nonzero(latent_image) == 0
    ):
        latent_image = util.repeat_to_batch_size(latent_image, latent_channels, dim=1)
    return latent_image