File size: 9,404 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d117d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import math
import numpy as np
import torch
from PIL import Image


def get_tiled_scale_steps(width: int, height: int, tile_x: int, tile_y: int, overlap: int) -> int:
    """#### Calculate the number of steps required for tiled scaling.



    #### Args:

        - `width` (int): The width of the image.

        - `height` (int): The height of the image.

        - `tile_x` (int): The width of each tile.

        - `tile_y` (int): The height of each tile.

        - `overlap` (int): The overlap between tiles.



    #### Returns:

        - `int`: The number of steps required for tiled scaling.

    """
    return math.ceil((height / (tile_y - overlap))) * math.ceil(
        (width / (tile_x - overlap))
    )


@torch.inference_mode()
def tiled_scale(

    samples: torch.Tensor,

    function: callable,

    tile_x: int = 64,

    tile_y: int = 64,

    overlap: int = 8,

    upscale_amount: float = 4,

    out_channels: int = 3,

    pbar: any = None,

) -> torch.Tensor:
    """#### Perform tiled scaling on a batch of samples.



    #### Args:

        - `samples` (torch.Tensor): The input samples.

        - `function` (callable): The function to apply to each tile.

        - `tile_x` (int, optional): The width of each tile. Defaults to 64.

        - `tile_y` (int, optional): The height of each tile. Defaults to 64.

        - `overlap` (int, optional): The overlap between tiles. Defaults to 8.

        - `upscale_amount` (float, optional): The upscale amount. Defaults to 4.

        - `out_channels` (int, optional): The number of output channels. Defaults to 3.

        - `pbar` (any, optional): The progress bar. Defaults to None.



    #### Returns:

        - `torch.Tensor`: The scaled output tensor.

    """
    output = torch.empty(
        (
            samples.shape[0],
            out_channels,
            round(samples.shape[2] * upscale_amount),
            round(samples.shape[3] * upscale_amount),
        ),
        device="cpu",
    )
    for b in range(samples.shape[0]):
        s = samples[b : b + 1]
        out = torch.zeros(
            (
                s.shape[0],
                out_channels,
                round(s.shape[2] * upscale_amount),
                round(s.shape[3] * upscale_amount),
            ),
            device="cpu",
        )
        out_div = torch.zeros(
            (
                s.shape[0],
                out_channels,
                round(s.shape[2] * upscale_amount),
                round(s.shape[3] * upscale_amount),
            ),
            device="cpu",
        )
        for y in range(0, s.shape[2], tile_y - overlap):
            for x in range(0, s.shape[3], tile_x - overlap):
                s_in = s[:, :, y : y + tile_y, x : x + tile_x]

                ps = function(s_in).cpu()
                mask = torch.ones_like(ps)
                feather = round(overlap * upscale_amount)
                for t in range(feather):
                    mask[:, :, t : 1 + t, :] *= (1.0 / feather) * (t + 1)
                    mask[:, :, mask.shape[2] - 1 - t : mask.shape[2] - t, :] *= (
                        1.0 / feather
                    ) * (t + 1)
                    mask[:, :, :, t : 1 + t] *= (1.0 / feather) * (t + 1)
                    mask[:, :, :, mask.shape[3] - 1 - t : mask.shape[3] - t] *= (
                        1.0 / feather
                    ) * (t + 1)
                out[
                    :,
                    :,
                    round(y * upscale_amount) : round((y + tile_y) * upscale_amount),
                    round(x * upscale_amount) : round((x + tile_x) * upscale_amount),
                ] += ps * mask
                out_div[
                    :,
                    :,
                    round(y * upscale_amount) : round((y + tile_y) * upscale_amount),
                    round(x * upscale_amount) : round((x + tile_x) * upscale_amount),
                ] += mask

        output[b : b + 1] = out / out_div
    return output


def flatten(img: Image.Image, bgcolor: str) -> Image.Image:
    """#### Replace transparency with a background color.



    #### Args:

        - `img` (Image.Image): The input image.

        - `bgcolor` (str): The background color.



    #### Returns:

        - `Image.Image`: The image with transparency replaced by the background color.

    """
    if img.mode in ("RGB"):
        return img
    return Image.alpha_composite(Image.new("RGBA", img.size, bgcolor), img).convert(
        "RGB"
    )


BLUR_KERNEL_SIZE = 15


def tensor_to_pil(img_tensor: torch.Tensor, batch_index: int = 0) -> Image.Image:
    """#### Convert a tensor to a PIL image.



    #### Args:

        - `img_tensor` (torch.Tensor): The input tensor.

        - `batch_index` (int, optional): The batch index. Defaults to 0.



    #### Returns:

        - `Image.Image`: The converted PIL image.

    """
    img_tensor = img_tensor[batch_index].unsqueeze(0)
    i = 255.0 * img_tensor.cpu().numpy()
    img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8).squeeze())
    return img


def pil_to_tensor(image: Image.Image) -> torch.Tensor:
    """#### Convert a PIL image to a tensor.



    #### Args:

        - `image` (Image.Image): The input PIL image.



    #### Returns:

        - `torch.Tensor`: The converted tensor.

    """
    image = np.array(image).astype(np.float32) / 255.0
    image = torch.from_numpy(image).unsqueeze(0)
    return image


def get_crop_region(mask: Image.Image, pad: int = 0) -> tuple:
    """#### Get the coordinates of the white rectangular mask region.



    #### Args:

        - `mask` (Image.Image): The input mask image in 'L' mode.

        - `pad` (int, optional): The padding to apply. Defaults to 0.



    #### Returns:

        - `tuple`: The coordinates of the crop region.

    """
    coordinates = mask.getbbox()
    if coordinates is not None:
        x1, y1, x2, y2 = coordinates
    else:
        x1, y1, x2, y2 = mask.width, mask.height, 0, 0
    # Apply padding
    x1 = max(x1 - pad, 0)
    y1 = max(y1 - pad, 0)
    x2 = min(x2 + pad, mask.width)
    y2 = min(y2 + pad, mask.height)
    return fix_crop_region((x1, y1, x2, y2), (mask.width, mask.height))


def fix_crop_region(region: tuple, image_size: tuple) -> tuple:
    """#### Remove the extra pixel added by the get_crop_region function.



    #### Args:

        - `region` (tuple): The crop region coordinates.

        - `image_size` (tuple): The size of the image.



    #### Returns:

        - `tuple`: The fixed crop region coordinates.

    """
    image_width, image_height = image_size
    x1, y1, x2, y2 = region
    if x2 < image_width:
        x2 -= 1
    if y2 < image_height:
        y2 -= 1
    return x1, y1, x2, y2


def expand_crop(region: tuple, width: int, height: int, target_width: int, target_height: int) -> tuple:
    """#### Expand a crop region to a specified target size.



    #### Args:

        - `region` (tuple): The crop region coordinates.

        - `width` (int): The width of the image.

        - `height` (int): The height of the image.

        - `target_width` (int): The desired width of the crop region.

        - `target_height` (int): The desired height of the crop region.



    #### Returns:

        - `tuple`: The expanded crop region coordinates and the target size.

    """
    x1, y1, x2, y2 = region
    actual_width = x2 - x1
    actual_height = y2 - y1

    # Try to expand region to the right of half the difference
    width_diff = target_width - actual_width
    x2 = min(x2 + width_diff // 2, width)
    # Expand region to the left of the difference including the pixels that could not be expanded to the right
    width_diff = target_width - (x2 - x1)
    x1 = max(x1 - width_diff, 0)
    # Try the right again
    width_diff = target_width - (x2 - x1)
    x2 = min(x2 + width_diff, width)

    # Try to expand region to the bottom of half the difference
    height_diff = target_height - actual_height
    y2 = min(y2 + height_diff // 2, height)
    # Expand region to the top of the difference including the pixels that could not be expanded to the bottom
    height_diff = target_height - (y2 - y1)
    y1 = max(y1 - height_diff, 0)
    # Try the bottom again
    height_diff = target_height - (y2 - y1)
    y2 = min(y2 + height_diff, height)

    return (x1, y1, x2, y2), (target_width, target_height)


def crop_cond(cond: list, region: tuple, init_size: tuple, canvas_size: tuple, tile_size: tuple, w_pad: int = 0, h_pad: int = 0) -> list:
    """#### Crop conditioning data to match a specific region.



    #### Args:

        - `cond` (list): The conditioning data.

        - `region` (tuple): The crop region coordinates.

        - `init_size` (tuple): The initial size of the image.

        - `canvas_size` (tuple): The size of the canvas.

        - `tile_size` (tuple): The size of the tile.

        - `w_pad` (int, optional): The width padding. Defaults to 0.

        - `h_pad` (int, optional): The height padding. Defaults to 0.



    #### Returns:

        - `list`: The cropped conditioning data.

    """
    cropped = []
    for emb, x in cond:
        cond_dict = x.copy()
        n = [emb, cond_dict]
        cropped.append(n)
    return cropped