Spaces:
Running
on
Zero
Running
on
Zero
File size: 34,607 Bytes
d9a2e19 1d117d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 |
from modules.AutoEncoders import VariationalAE
from modules.sample import sampling
from modules.UltimateSDUpscale import USDU_upscaler, image_util
import torch
from PIL import ImageFilter, ImageDraw, Image
from enum import Enum
import math
# taken from https://github.com/ssitu/ComfyUI_UltimateSDUpscale
state = USDU_upscaler.state
class UnsupportedModel(Exception):
"""#### Exception raised for unsupported models."""
pass
class StableDiffusionProcessing:
"""#### Class representing the processing of Stable Diffusion images."""
def __init__(
self,
init_img: Image.Image,
model: torch.nn.Module,
positive: str,
negative: str,
vae: VariationalAE.VAE,
seed: int,
steps: int,
cfg: float,
sampler_name: str,
scheduler: str,
denoise: float,
upscale_by: float,
uniform_tile_mode: bool,
):
"""
#### Initialize the StableDiffusionProcessing class.
#### Args:
- `init_img` (Image.Image): The initial image.
- `model` (torch.nn.Module): The model.
- `positive` (str): The positive prompt.
- `negative` (str): The negative prompt.
- `vae` (VariationalAE.VAE): The variational autoencoder.
- `seed` (int): The seed.
- `steps` (int): The number of steps.
- `cfg` (float): The CFG scale.
- `sampler_name` (str): The sampler name.
- `scheduler` (str): The scheduler.
- `denoise` (float): The denoise strength.
- `upscale_by` (float): The upscale factor.
- `uniform_tile_mode` (bool): Whether to use uniform tile mode.
"""
# Variables used by the USDU script
self.init_images = [init_img]
self.image_mask = None
self.mask_blur = 0
self.inpaint_full_res_padding = 0
self.width = init_img.width
self.height = init_img.height
self.model = model
self.positive = positive
self.negative = negative
self.vae = vae
self.seed = seed
self.steps = steps
self.cfg = cfg
self.sampler_name = sampler_name
self.scheduler = scheduler
self.denoise = denoise
# Variables used only by this script
self.init_size = init_img.width, init_img.height
self.upscale_by = upscale_by
self.uniform_tile_mode = uniform_tile_mode
# Other required A1111 variables for the USDU script that is currently unused in this script
self.extra_generation_params = {}
class Processed:
"""#### Class representing the processed images."""
def __init__(
self, p: StableDiffusionProcessing, images: list, seed: int, info: str
):
"""
#### Initialize the Processed class.
#### Args:
- `p` (StableDiffusionProcessing): The processing object.
- `images` (list): The list of images.
- `seed` (int): The seed.
- `info` (str): The information string.
"""
self.images = images
self.seed = seed
self.info = info
def infotext(self, p: StableDiffusionProcessing, index: int) -> str:
"""
#### Get the information text.
#### Args:
- `p` (StableDiffusionProcessing): The processing object.
- `index` (int): The index.
#### Returns:
- `str`: The information text.
"""
return None
def fix_seed(p: StableDiffusionProcessing) -> None:
"""
#### Fix the seed for reproducibility.
#### Args:
- `p` (StableDiffusionProcessing): The processing object.
"""
pass
def process_images(p: StableDiffusionProcessing, pipeline: bool = False) -> Processed:
"""
#### Process the images.
#### Args:
- `p` (StableDiffusionProcessing): The processing object.
#### Returns:
- `Processed`: The processed images.
"""
# Where the main image generation happens in A1111
# Setup
image_mask = p.image_mask.convert("L")
init_image = p.init_images[0]
# Locate the white region of the mask outlining the tile and add padding
crop_region = image_util.get_crop_region(image_mask, p.inpaint_full_res_padding)
x1, y1, x2, y2 = crop_region
crop_width = x2 - x1
crop_height = y2 - y1
crop_ratio = crop_width / crop_height
p_ratio = p.width / p.height
if crop_ratio > p_ratio:
target_width = crop_width
target_height = round(crop_width / p_ratio)
else:
target_width = round(crop_height * p_ratio)
target_height = crop_height
crop_region, _ = image_util.expand_crop(
crop_region,
image_mask.width,
image_mask.height,
target_width,
target_height,
)
tile_size = p.width, p.height
# Blur the mask
if p.mask_blur > 0:
image_mask = image_mask.filter(ImageFilter.GaussianBlur(p.mask_blur))
# Crop the images to get the tiles that will be used for generation
tiles = [img.crop(crop_region) for img in USDU_upscaler.batch]
# Assume the same size for all images in the batch
initial_tile_size = tiles[0].size
# Resize if necessary
for i, tile in enumerate(tiles):
if tile.size != tile_size:
tiles[i] = tile.resize(tile_size, Image.Resampling.LANCZOS)
# Crop conditioning
positive_cropped = image_util.crop_cond(
p.positive, crop_region, p.init_size, init_image.size, tile_size
)
negative_cropped = image_util.crop_cond(
p.negative, crop_region, p.init_size, init_image.size, tile_size
)
# Encode the image
vae_encoder = VariationalAE.VAEEncode()
batched_tiles = torch.cat([image_util.pil_to_tensor(tile) for tile in tiles], dim=0)
(latent,) = vae_encoder.encode(p.vae, batched_tiles)
# Generate samples
(samples,) = sampling.common_ksampler(
p.model,
p.seed,
p.steps,
p.cfg,
p.sampler_name,
p.scheduler,
positive_cropped,
negative_cropped,
latent,
denoise=p.denoise,
pipeline=pipeline
)
# Decode the sample
vae_decoder = VariationalAE.VAEDecode()
(decoded,) = vae_decoder.decode(p.vae, samples)
# Convert the sample to a PIL image
tiles_sampled = [image_util.tensor_to_pil(decoded, i) for i in range(len(decoded))]
for i, tile_sampled in enumerate(tiles_sampled):
init_image = USDU_upscaler.batch[i]
# Resize back to the original size
if tile_sampled.size != initial_tile_size:
tile_sampled = tile_sampled.resize(
initial_tile_size, Image.Resampling.LANCZOS
)
# Put the tile into position
image_tile_only = Image.new("RGBA", init_image.size)
image_tile_only.paste(tile_sampled, crop_region[:2])
# Add the mask as an alpha channel
# Must make a copy due to the possibility of an edge becoming black
temp = image_tile_only.copy()
image_mask = image_mask.resize(temp.size)
temp.putalpha(image_mask)
temp.putalpha(image_mask)
image_tile_only.paste(temp, image_tile_only)
# Add back the tile to the initial image according to the mask in the alpha channel
result = init_image.convert("RGBA")
result.alpha_composite(image_tile_only)
# Convert back to RGB
result = result.convert("RGB")
USDU_upscaler.batch[i] = result
processed = Processed(p, [USDU_upscaler.batch[0]], p.seed, None)
return processed
class USDUMode(Enum):
"""#### Enum representing the modes for Ultimate SD Upscale."""
LINEAR = 0
CHESS = 1
NONE = 2
class USDUSFMode(Enum):
"""#### Enum representing the seam fix modes for Ultimate SD Upscale."""
NONE = 0
BAND_PASS = 1
HALF_TILE = 2
HALF_TILE_PLUS_INTERSECTIONS = 3
class USDUpscaler:
"""#### Class representing the Ultimate SD Upscaler."""
def __init__(
self,
p: StableDiffusionProcessing,
image: Image.Image,
upscaler_index: int,
save_redraw: bool,
save_seams_fix: bool,
tile_width: int,
tile_height: int,
) -> None:
"""
#### Initialize the USDUpscaler class.
#### Args:
- `p` (StableDiffusionProcessing): The processing object.
- `image` (Image.Image): The image.
- `upscaler_index` (int): The upscaler index.
- `save_redraw` (bool): Whether to save the redraw.
- `save_seams_fix` (bool): Whether to save the seams fix.
- `tile_width` (int): The tile width.
- `tile_height` (int): The tile height.
"""
self.p: StableDiffusionProcessing = p
self.image: Image = image
self.scale_factor = math.ceil(
max(p.width, p.height) / max(image.width, image.height)
)
self.upscaler = USDU_upscaler.sd_upscalers[upscaler_index]
self.redraw = USDURedraw()
self.redraw.save = save_redraw
self.redraw.tile_width = tile_width if tile_width > 0 else tile_height
self.redraw.tile_height = tile_height if tile_height > 0 else tile_width
self.seams_fix = USDUSeamsFix()
self.seams_fix.save = save_seams_fix
self.seams_fix.tile_width = tile_width if tile_width > 0 else tile_height
self.seams_fix.tile_height = tile_height if tile_height > 0 else tile_width
self.initial_info = None
self.rows = math.ceil(self.p.height / self.redraw.tile_height)
self.cols = math.ceil(self.p.width / self.redraw.tile_width)
def get_factor(self, num: int) -> int:
"""
#### Get the factor for a given number.
#### Args:
- `num` (int): The number.
#### Returns:
- `int`: The factor.
"""
if num == 1:
return 2
if num % 4 == 0:
return 4
if num % 3 == 0:
return 3
if num % 2 == 0:
return 2
return 0
def get_factors(self) -> None:
"""
#### Get the list of scale factors.
"""
scales = []
current_scale = 1
current_scale_factor = self.get_factor(self.scale_factor)
while current_scale < self.scale_factor:
current_scale_factor = self.get_factor(self.scale_factor // current_scale)
scales.append(current_scale_factor)
current_scale = current_scale * current_scale_factor
self.scales = enumerate(scales)
def upscale(self) -> None:
"""
#### Upscale the image.
"""
# Log info
print(f"Canva size: {self.p.width}x{self.p.height}")
print(f"Image size: {self.image.width}x{self.image.height}")
print(f"Scale factor: {self.scale_factor}")
# Get list with scale factors
self.get_factors()
# Upscaling image over all factors
for index, value in self.scales:
print(f"Upscaling iteration {index + 1} with scale factor {value}")
self.image = self.upscaler.scaler.upscale(
self.image, value, self.upscaler.data_path
)
# Resize image to set values
self.image = self.image.resize(
(self.p.width, self.p.height), resample=Image.LANCZOS
)
def setup_redraw(self, redraw_mode: int, padding: int, mask_blur: int) -> None:
"""
#### Set up the redraw.
#### Args:
- `redraw_mode` (int): The redraw mode.
- `padding` (int): The padding.
- `mask_blur` (int): The mask blur.
"""
self.redraw.mode = USDUMode(redraw_mode)
self.redraw.enabled = self.redraw.mode != USDUMode.NONE
self.redraw.padding = padding
self.p.mask_blur = mask_blur
def setup_seams_fix(
self, padding: int, denoise: float, mask_blur: int, width: int, mode: int
) -> None:
"""
#### Set up the seams fix.
#### Args:
- `padding` (int): The padding.
- `denoise` (float): The denoise strength.
- `mask_blur` (int): The mask blur.
- `width` (int): The width.
- `mode` (int): The mode.
"""
self.seams_fix.padding = padding
self.seams_fix.denoise = denoise
self.seams_fix.mask_blur = mask_blur
self.seams_fix.width = width
self.seams_fix.mode = USDUSFMode(mode)
self.seams_fix.enabled = self.seams_fix.mode != USDUSFMode.NONE
def calc_jobs_count(self) -> None:
"""
#### Calculate the number of jobs.
"""
redraw_job_count = (self.rows * self.cols) if self.redraw.enabled else 0
seams_job_count = self.rows * (self.cols - 1) + (self.rows - 1) * self.cols
global state
state.job_count = redraw_job_count + seams_job_count
def print_info(self) -> None:
"""
#### Print the information.
"""
print(f"Tile size: {self.redraw.tile_width}x{self.redraw.tile_height}")
print(f"Tiles amount: {self.rows * self.cols}")
print(f"Grid: {self.rows}x{self.cols}")
print(f"Redraw enabled: {self.redraw.enabled}")
print(f"Seams fix mode: {self.seams_fix.mode.name}")
def add_extra_info(self) -> None:
"""
#### Add extra information.
"""
self.p.extra_generation_params["Ultimate SD upscale upscaler"] = (
self.upscaler.name
)
self.p.extra_generation_params["Ultimate SD upscale tile_width"] = (
self.redraw.tile_width
)
self.p.extra_generation_params["Ultimate SD upscale tile_height"] = (
self.redraw.tile_height
)
self.p.extra_generation_params["Ultimate SD upscale mask_blur"] = (
self.p.mask_blur
)
self.p.extra_generation_params["Ultimate SD upscale padding"] = (
self.redraw.padding
)
def process(self, pipeline) -> None:
"""
#### Process the image.
"""
USDU_upscaler.state.begin()
self.calc_jobs_count()
self.result_images = []
if self.redraw.enabled:
self.image = self.redraw.start(self.p, self.image, self.rows, self.cols, pipeline)
self.initial_info = self.redraw.initial_info
self.result_images.append(self.image)
if self.seams_fix.enabled:
self.image = self.seams_fix.start(self.p, self.image, self.rows, self.cols, pipeline)
self.initial_info = self.seams_fix.initial_info
self.result_images.append(self.image)
USDU_upscaler.state.end()
class USDURedraw:
"""#### Class representing the redraw functionality for Ultimate SD Upscale."""
def init_draw(self, p: StableDiffusionProcessing, width: int, height: int) -> tuple:
"""
#### Initialize the draw.
#### Args:
- `p` (StableDiffusionProcessing): The processing object.
- `width` (int): The width.
- `height` (int): The height.
#### Returns:
- `tuple`: The mask and draw objects.
"""
p.inpaint_full_res = True
p.inpaint_full_res_padding = self.padding
p.width = math.ceil((self.tile_width + self.padding) / 64) * 64
p.height = math.ceil((self.tile_height + self.padding) / 64) * 64
mask = Image.new("L", (width, height), "black")
draw = ImageDraw.Draw(mask)
return mask, draw
def calc_rectangle(self, xi: int, yi: int) -> tuple:
"""
#### Calculate the rectangle coordinates.
#### Args:
- `xi` (int): The x index.
- `yi` (int): The y index.
#### Returns:
- `tuple`: The rectangle coordinates.
"""
x1 = xi * self.tile_width
y1 = yi * self.tile_height
x2 = xi * self.tile_width + self.tile_width
y2 = yi * self.tile_height + self.tile_height
return x1, y1, x2, y2
def linear_process(
self, p: StableDiffusionProcessing, image: Image.Image, rows: int, cols: int, pipeline: bool = False
) -> Image.Image:
"""
#### Perform linear processing.
#### Args:
- `p` (StableDiffusionProcessing): The processing object.
- `image` (Image.Image): The image.
- `rows` (int): The number of rows.
- `cols` (int): The number of columns.
#### Returns:
- `Image.Image`: The processed image.
"""
global state
mask, draw = self.init_draw(p, image.width, image.height)
for yi in range(rows):
for xi in range(cols):
if state.interrupted:
break
draw.rectangle(self.calc_rectangle(xi, yi), fill="white")
p.init_images = [image]
p.image_mask = mask
processed = process_images(p, pipeline)
draw.rectangle(self.calc_rectangle(xi, yi), fill="black")
if len(processed.images) > 0:
image = processed.images[0]
p.width = image.width
p.height = image.height
self.initial_info = processed.infotext(p, 0)
return image
def start(self, p: StableDiffusionProcessing, image: Image.Image, rows: int, cols: int, pipeline: bool = False) -> Image.Image:
"""#### Start the redraw.
#### Args:
- `p` (StableDiffusionProcessing): The processing object.
- `image` (Image.Image): The image.
- `rows` (int): The number of rows.
- `cols` (int): The number of columns.
#### Returns:
- `Image.Image`: The processed image.
"""
self.initial_info = None
return self.linear_process(p, image, rows, cols, pipeline=pipeline)
class USDUSeamsFix:
"""#### Class representing the seams fix functionality for Ultimate SD Upscale."""
def init_draw(self, p: StableDiffusionProcessing) -> None:
"""#### Initialize the draw.
#### Args:
- `p` (StableDiffusionProcessing): The processing object.
"""
self.initial_info = None
p.width = math.ceil((self.tile_width + self.padding) / 64) * 64
p.height = math.ceil((self.tile_height + self.padding) / 64) * 64
def half_tile_process(
self, p: StableDiffusionProcessing, image: Image.Image, rows: int, cols: int, pipeline: bool = False
) -> Image.Image:
"""#### Perform half-tile processing.
#### Args:
- `p` (StableDiffusionProcessing): The processing object.
- `image` (Image.Image): The image.
- `rows` (int): The number of rows.
- `cols` (int): The number of columns.
#### Returns:
- `Image.Image`: The processed image.
"""
global state
self.init_draw(p)
processed = None
gradient = Image.linear_gradient("L")
row_gradient = Image.new("L", (self.tile_width, self.tile_height), "black")
row_gradient.paste(
gradient.resize(
(self.tile_width, self.tile_height // 2), resample=Image.BICUBIC
),
(0, 0),
)
row_gradient.paste(
gradient.rotate(180).resize(
(self.tile_width, self.tile_height // 2), resample=Image.BICUBIC
),
(0, self.tile_height // 2),
)
col_gradient = Image.new("L", (self.tile_width, self.tile_height), "black")
col_gradient.paste(
gradient.rotate(90).resize(
(self.tile_width // 2, self.tile_height), resample=Image.BICUBIC
),
(0, 0),
)
col_gradient.paste(
gradient.rotate(270).resize(
(self.tile_width // 2, self.tile_height), resample=Image.BICUBIC
),
(self.tile_width // 2, 0),
)
p.denoising_strength = self.denoise
p.mask_blur = self.mask_blur
for yi in range(rows - 1):
for xi in range(cols):
p.width = self.tile_width
p.height = self.tile_height
p.inpaint_full_res = True
p.inpaint_full_res_padding = self.padding
mask = Image.new("L", (image.width, image.height), "black")
mask.paste(
row_gradient,
(
xi * self.tile_width,
yi * self.tile_height + self.tile_height // 2,
),
)
p.init_images = [image]
p.image_mask = mask
processed = process_images(p, pipeline)
if len(processed.images) > 0:
image = processed.images[0]
for yi in range(rows):
for xi in range(cols - 1):
p.width = self.tile_width
p.height = self.tile_height
p.inpaint_full_res = True
p.inpaint_full_res_padding = self.padding
mask = Image.new("L", (image.width, image.height), "black")
mask.paste(
col_gradient,
(
xi * self.tile_width + self.tile_width // 2,
yi * self.tile_height,
),
)
p.init_images = [image]
p.image_mask = mask
processed = process_images(p, pipeline)
if len(processed.images) > 0:
image = processed.images[0]
p.width = image.width
p.height = image.height
if processed is not None:
self.initial_info = processed.infotext(p, 0)
return image
def start(
self, p: StableDiffusionProcessing, image: Image.Image, rows: int, cols: int, pipeline: bool = False
) -> Image.Image:
"""#### Start the seams fix process.
#### Args:
- `p` (StableDiffusionProcessing): The processing object.
- `image` (Image.Image): The image.
- `rows` (int): The number of rows.
- `cols` (int): The number of columns.
#### Returns:
- `Image.Image`: The processed image.
"""
return self.half_tile_process(p, image, rows, cols, pipeline=pipeline)
class Script(USDU_upscaler.Script):
"""#### Class representing the script for Ultimate SD Upscale."""
def run(
self,
p: StableDiffusionProcessing,
_: None,
tile_width: int,
tile_height: int,
mask_blur: int,
padding: int,
seams_fix_width: int,
seams_fix_denoise: float,
seams_fix_padding: int,
upscaler_index: int,
save_upscaled_image: bool,
redraw_mode: int,
save_seams_fix_image: bool,
seams_fix_mask_blur: int,
seams_fix_type: int,
target_size_type: int,
custom_width: int,
custom_height: int,
custom_scale: float,
pipeline: bool = False,
) -> Processed:
"""#### Run the script.
#### Args:
- `p` (StableDiffusionProcessing): The processing object.
- `_` (None): Unused parameter.
- `tile_width` (int): The tile width.
- `tile_height` (int): The tile height.
- `mask_blur` (int): The mask blur.
- `padding` (int): The padding.
- `seams_fix_width` (int): The seams fix width.
- `seams_fix_denoise` (float): The seams fix denoise strength.
- `seams_fix_padding` (int): The seams fix padding.
- `upscaler_index` (int): The upscaler index.
- `save_upscaled_image` (bool): Whether to save the upscaled image.
- `redraw_mode` (int): The redraw mode.
- `save_seams_fix_image` (bool): Whether to save the seams fix image.
- `seams_fix_mask_blur` (int): The seams fix mask blur.
- `seams_fix_type` (int): The seams fix type.
- `target_size_type` (int): The target size type.
- `custom_width` (int): The custom width.
- `custom_height` (int): The custom height.
- `custom_scale` (float): The custom scale.
#### Returns:
- `Processed`: The processed images.
"""
# Init
fix_seed(p)
USDU_upscaler.torch_gc()
p.do_not_save_grid = True
p.do_not_save_samples = True
p.inpaint_full_res = False
p.inpainting_fill = 1
p.n_iter = 1
p.batch_size = 1
seed = p.seed
# Init image
init_img = p.init_images[0]
init_img = image_util.flatten(
init_img, USDU_upscaler.opts.img2img_background_color
)
p.width = math.ceil((init_img.width * custom_scale) / 64) * 64
p.height = math.ceil((init_img.height * custom_scale) / 64) * 64
# Upscaling
upscaler = USDUpscaler(
p,
init_img,
upscaler_index,
save_upscaled_image,
save_seams_fix_image,
tile_width,
tile_height,
)
upscaler.upscale()
# Drawing
upscaler.setup_redraw(redraw_mode, padding, mask_blur)
upscaler.setup_seams_fix(
seams_fix_padding,
seams_fix_denoise,
seams_fix_mask_blur,
seams_fix_width,
seams_fix_type,
)
upscaler.print_info()
upscaler.add_extra_info()
upscaler.process(pipeline=pipeline)
result_images = upscaler.result_images
return Processed(
p,
result_images,
seed,
upscaler.initial_info if upscaler.initial_info is not None else "",
)
# Upscaler
old_init = USDUpscaler.__init__
def new_init(
self: USDUpscaler,
p: StableDiffusionProcessing,
image: Image.Image,
upscaler_index: int,
save_redraw: bool,
save_seams_fix: bool,
tile_width: int,
tile_height: int,
) -> None:
"""#### Initialize the USDUpscaler class with new settings.
#### Args:
- `self` (USDUpscaler): The USDUpscaler instance.
- `p` (StableDiffusionProcessing): The processing object.
- `image` (Image.Image): The image.
- `upscaler_index` (int): The upscaler index.
- `save_redraw` (bool): Whether to save the redraw.
- `save_seams_fix` (bool): Whether to save the seams fix.
- `tile_width` (int): The tile width.
- `tile_height` (int): The tile height.
"""
p.width = math.ceil((image.width * p.upscale_by) / 8) * 8
p.height = math.ceil((image.height * p.upscale_by) / 8) * 8
old_init(
self,
p,
image,
upscaler_index,
save_redraw,
save_seams_fix,
tile_width,
tile_height,
)
USDUpscaler.__init__ = new_init
# Redraw
old_setup_redraw = USDURedraw.init_draw
def new_setup_redraw(
self: USDURedraw, p: StableDiffusionProcessing, width: int, height: int
) -> tuple:
"""#### Set up the redraw with new settings.
#### Args:
- `self` (USDURedraw): The USDURedraw instance.
- `p` (StableDiffusionProcessing): The processing object.
- `width` (int): The width.
- `height` (int): The height.
#### Returns:
- `tuple`: The mask and draw objects.
"""
mask, draw = old_setup_redraw(self, p, width, height)
p.width = math.ceil((self.tile_width + self.padding) / 8) * 8
p.height = math.ceil((self.tile_height + self.padding) / 8) * 8
return mask, draw
USDURedraw.init_draw = new_setup_redraw
# Seams fix
old_setup_seams_fix = USDUSeamsFix.init_draw
def new_setup_seams_fix(self: USDUSeamsFix, p: StableDiffusionProcessing) -> None:
"""#### Set up the seams fix with new settings.
#### Args:
- `self` (USDUSeamsFix): The USDUSeamsFix instance.
- `p` (StableDiffusionProcessing): The processing object.
"""
old_setup_seams_fix(self, p)
p.width = math.ceil((self.tile_width + self.padding) / 8) * 8
p.height = math.ceil((self.tile_height + self.padding) / 8) * 8
USDUSeamsFix.init_draw = new_setup_seams_fix
# Make the script upscale on a batch of images instead of one image
old_upscale = USDUpscaler.upscale
def new_upscale(self: USDUpscaler) -> None:
"""#### Upscale a batch of images.
#### Args:
- `self` (USDUpscaler): The USDUpscaler instance.
"""
old_upscale(self)
USDU_upscaler.batch = [self.image] + [
img.resize((self.p.width, self.p.height), resample=Image.LANCZOS)
for img in USDU_upscaler.batch[1:]
]
USDUpscaler.upscale = new_upscale
MAX_RESOLUTION = 8192
# The modes available for Ultimate SD Upscale
MODES = {
"Linear": USDUMode.LINEAR,
"Chess": USDUMode.CHESS,
"None": USDUMode.NONE,
}
# The seam fix modes
SEAM_FIX_MODES = {
"None": USDUSFMode.NONE,
"Band Pass": USDUSFMode.BAND_PASS,
"Half Tile": USDUSFMode.HALF_TILE,
"Half Tile + Intersections": USDUSFMode.HALF_TILE_PLUS_INTERSECTIONS,
}
class UltimateSDUpscale:
"""#### Class representing the Ultimate SD Upscale functionality."""
def upscale(
self,
image: torch.Tensor,
model: torch.nn.Module,
positive: str,
negative: str,
vae: VariationalAE.VAE,
upscale_by: float,
seed: int,
steps: int,
cfg: float,
sampler_name: str,
scheduler: str,
denoise: float,
upscale_model: any,
mode_type: str,
tile_width: int,
tile_height: int,
mask_blur: int,
tile_padding: int,
seam_fix_mode: str,
seam_fix_denoise: float,
seam_fix_mask_blur: int,
seam_fix_width: int,
seam_fix_padding: int,
force_uniform_tiles: bool,
pipeline: bool = False,
) -> tuple:
"""#### Upscale the image.
#### Args:
- `image` (torch.Tensor): The image tensor.
- `model` (torch.nn.Module): The model.
- `positive` (str): The positive prompt.
- `negative` (str): The negative prompt.
- `vae` (VariationalAE.VAE): The variational autoencoder.
- `upscale_by` (float): The upscale factor.
- `seed` (int): The seed.
- `steps` (int): The number of steps.
- `cfg` (float): The CFG scale.
- `sampler_name` (str): The sampler name.
- `scheduler` (str): The scheduler.
- `denoise` (float): The denoise strength.
- `upscale_model` (any): The upscale model.
- `mode_type` (str): The mode type.
- `tile_width` (int): The tile width.
- `tile_height` (int): The tile height.
- `mask_blur` (int): The mask blur.
- `tile_padding` (int): The tile padding.
- `seam_fix_mode` (str): The seam fix mode.
- `seam_fix_denoise` (float): The seam fix denoise strength.
- `seam_fix_mask_blur` (int): The seam fix mask blur.
- `seam_fix_width` (int): The seam fix width.
- `seam_fix_padding` (int): The seam fix padding.
- `force_uniform_tiles` (bool): Whether to force uniform tiles.
#### Returns:
- `tuple`: The resulting tensor.
"""
# Set up A1111 patches
# Upscaler
# An object that the script works with
USDU_upscaler.sd_upscalers[0] = USDU_upscaler.UpscalerData()
# Where the actual upscaler is stored, will be used when the script upscales using the Upscaler in UpscalerData
USDU_upscaler.actual_upscaler = upscale_model
# Set the batch of images
USDU_upscaler.batch = [image_util.tensor_to_pil(image, i) for i in range(len(image))]
# Processing
sdprocessing = StableDiffusionProcessing(
image_util.tensor_to_pil(image),
model,
positive,
negative,
vae,
seed,
steps,
cfg,
sampler_name,
scheduler,
denoise,
upscale_by,
force_uniform_tiles,
)
# Running the script
script = Script()
script.run(
p=sdprocessing,
_=None,
tile_width=tile_width,
tile_height=tile_height,
mask_blur=mask_blur,
padding=tile_padding,
seams_fix_width=seam_fix_width,
seams_fix_denoise=seam_fix_denoise,
seams_fix_padding=seam_fix_padding,
upscaler_index=0,
save_upscaled_image=False,
redraw_mode=MODES[mode_type],
save_seams_fix_image=False,
seams_fix_mask_blur=seam_fix_mask_blur,
seams_fix_type=SEAM_FIX_MODES[seam_fix_mode],
target_size_type=2,
custom_width=None,
custom_height=None,
custom_scale=upscale_by,
pipeline=pipeline,
)
# Return the resulting images
images = [image_util.pil_to_tensor(img) for img in USDU_upscaler.batch]
tensor = torch.cat(images, dim=0)
return (tensor,) |