File size: 6,128 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d117d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from typing import Literal
import torch
import torch.nn as nn

ConvMode = Literal["CNA", "NAC", "CNAC"]

def act(act_type: str, inplace: bool = True, neg_slope: float = 0.2, n_prelu: int = 1) -> nn.Module:
    """#### Get the activation layer.



    #### Args:

        - `act_type` (str): The type of activation.

        - `inplace` (bool, optional): Whether to perform the operation in-place. Defaults to True.

        - `neg_slope` (float, optional): The negative slope for LeakyReLU. Defaults to 0.2.

        - `n_prelu` (int, optional): The number of PReLU parameters. Defaults to 1.



    #### Returns:

        - `nn.Module`: The activation layer.

    """
    act_type = act_type.lower()
    layer = nn.LeakyReLU(neg_slope, inplace)
    return layer

def get_valid_padding(kernel_size: int, dilation: int) -> int:
    """#### Get the valid padding for a convolutional layer.



    #### Args:

        - `kernel_size` (int): The size of the kernel.

        - `dilation` (int): The dilation rate.



    #### Returns:

        - `int`: The valid padding.

    """
    kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
    padding = (kernel_size - 1) // 2
    return padding

def sequential(*args: nn.Module) -> nn.Sequential:
    """#### Create a sequential container.



    #### Args:

        - `*args` (nn.Module): The modules to include in the sequential container.



    #### Returns:

        - `nn.Sequential`: The sequential container.

    """
    modules = []
    for module in args:
        if isinstance(module, nn.Sequential):
            for submodule in module.children():
                modules.append(submodule)
        elif isinstance(module, nn.Module):
            modules.append(module)
    return nn.Sequential(*modules)

def conv_block(

    in_nc: int,

    out_nc: int,

    kernel_size: int,

    stride: int = 1,

    dilation: int = 1,

    groups: int = 1,

    bias: bool = True,

    pad_type: str = "zero",

    norm_type: str | None = None,

    act_type: str | None = "relu",

    mode: ConvMode = "CNA",

    c2x2: bool = False,

) -> nn.Sequential:
    """#### Create a convolutional block.



    #### Args:

        - `in_nc` (int): The number of input channels.

        - `out_nc` (int): The number of output channels.

        - `kernel_size` (int): The size of the kernel.

        - `stride` (int, optional): The stride of the convolution. Defaults to 1.

        - `dilation` (int, optional): The dilation rate. Defaults to 1.

        - `groups` (int, optional): The number of groups. Defaults to 1.

        - `bias` (bool, optional): Whether to include a bias term. Defaults to True.

        - `pad_type` (str, optional): The type of padding. Defaults to "zero".

        - `norm_type` (str | None, optional): The type of normalization. Defaults to None.

        - `act_type` (str | None, optional): The type of activation. Defaults to "relu".

        - `mode` (ConvMode, optional): The mode of the convolution. Defaults to "CNA".

        - `c2x2` (bool, optional): Whether to use 2x2 convolutions. Defaults to False.



    #### Returns:

        - `nn.Sequential`: The convolutional block.

    """
    assert mode in ("CNA", "NAC", "CNAC"), "Wrong conv mode [{:s}]".format(mode)
    padding = get_valid_padding(kernel_size, dilation)
    padding = padding if pad_type == "zero" else 0

    c = nn.Conv2d(
        in_nc,
        out_nc,
        kernel_size=kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        bias=bias,
        groups=groups,
    )
    a = act(act_type) if act_type else None
    if mode in ("CNA", "CNAC"):
        return sequential(None, c, None, a)

def upconv_block(

    in_nc: int,

    out_nc: int,

    upscale_factor: int = 2,

    kernel_size: int = 3,

    stride: int = 1,

    bias: bool = True,

    pad_type: str = "zero",

    norm_type: str | None = None,

    act_type: str = "relu",

    mode: str = "nearest",

    c2x2: bool = False,

) -> nn.Sequential:
    """#### Create an upsampling convolutional block.



    #### Args:

        - `in_nc` (int): The number of input channels.

        - `out_nc` (int): The number of output channels.

        - `upscale_factor` (int, optional): The upscale factor. Defaults to 2.

        - `kernel_size` (int, optional): The size of the kernel. Defaults to 3.

        - `stride` (int, optional): The stride of the convolution. Defaults to 1.

        - `bias` (bool, optional): Whether to include a bias term. Defaults to True.

        - `pad_type` (str, optional): The type of padding. Defaults to "zero".

        - `norm_type` (str | None, optional): The type of normalization. Defaults to None.

        - `act_type` (str, optional): The type of activation. Defaults to "relu".

        - `mode` (str, optional): The mode of upsampling. Defaults to "nearest".

        - `c2x2` (bool, optional): Whether to use 2x2 convolutions. Defaults to False.



    #### Returns:

        - `nn.Sequential`: The upsampling convolutional block.

    """
    upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode)
    conv = conv_block(
        in_nc,
        out_nc,
        kernel_size,
        stride,
        bias=bias,
        pad_type=pad_type,
        norm_type=norm_type,
        act_type=act_type,
        c2x2=c2x2,
    )
    return sequential(upsample, conv)

class ShortcutBlock(nn.Module):
    """#### Elementwise sum the output of a submodule to its input."""

    def __init__(self, submodule: nn.Module):
        """#### Initialize the ShortcutBlock.



        #### Args:

            - `submodule` (nn.Module): The submodule to apply.

        """
        super(ShortcutBlock, self).__init__()
        self.sub = submodule

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """#### Forward pass.



        #### Args:

            - `x` (torch.Tensor): The input tensor.



        #### Returns:

            - `torch.Tensor`: The output tensor.

        """
        output = x + self.sub(x)
        return output