Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,565 Bytes
d9a2e19 1d117d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import logging
import os
import traceback
import torch
from transformers import CLIPTokenizerFast
def model_options_long_clip(sd, tokenizer_data, model_options):
w = sd.get("clip_l.text_model.embeddings.position_embedding.weight", None)
if w is None:
w = sd.get("text_model.embeddings.position_embedding.weight", None)
return tokenizer_data, model_options
def parse_parentheses(string: str) -> list:
"""#### Parse a string with nested parentheses.
#### Args:
- `string` (str): The input string.
#### Returns:
- `list`: The parsed list of strings.
"""
result = []
current_item = ""
nesting_level = 0
for char in string:
if char == "(":
if nesting_level == 0:
if current_item:
result.append(current_item)
current_item = "("
else:
current_item = "("
else:
current_item += char
nesting_level += 1
elif char == ")":
nesting_level -= 1
if nesting_level == 0:
result.append(current_item + ")")
current_item = ""
else:
current_item += char
else:
current_item += char
if current_item:
result.append(current_item)
return result
def token_weights(string: str, current_weight: float) -> list:
"""#### Parse a string into tokens with weights.
#### Args:
- `string` (str): The input string.
- `current_weight` (float): The current weight.
#### Returns:
- `list`: The list of token-weight pairs.
"""
a = parse_parentheses(string)
out = []
for x in a:
weight = current_weight
if len(x) >= 2 and x[-1] == ")" and x[0] == "(":
x = x[1:-1]
xx = x.rfind(":")
weight *= 1.1
if xx > 0:
try:
weight = float(x[xx + 1 :])
x = x[:xx]
except:
pass
out += token_weights(x, weight)
else:
out += [(x, current_weight)]
return out
def escape_important(text: str) -> str:
"""#### Escape important characters in a string.
#### Args:
- `text` (str): The input text.
#### Returns:
- `str`: The escaped text.
"""
text = text.replace("\\)", "\0\1")
text = text.replace("\\(", "\0\2")
return text
def unescape_important(text: str) -> str:
"""#### Unescape important characters in a string.
#### Args:
- `text` (str): The input text.
#### Returns:
- `str`: The unescaped text.
"""
text = text.replace("\0\1", ")")
text = text.replace("\0\2", "(")
return text
def expand_directory_list(directories: list) -> list:
"""#### Expand a list of directories to include all subdirectories.
#### Args:
- `directories` (list): The list of directories.
#### Returns:
- `list`: The expanded list of directories.
"""
dirs = set()
for x in directories:
dirs.add(x)
for root, subdir, file in os.walk(x, followlinks=True):
dirs.add(root)
return list(dirs)
def load_embed(embedding_name: str, embedding_directory: list, embedding_size: int, embed_key: str = None) -> torch.Tensor:
"""#### Load an embedding from a directory.
#### Args:
- `embedding_name` (str): The name of the embedding.
- `embedding_directory` (list): The list of directories to search.
- `embedding_size` (int): The size of the embedding.
- `embed_key` (str, optional): The key for the embedding. Defaults to None.
#### Returns:
- `torch.Tensor`: The loaded embedding.
"""
if isinstance(embedding_directory, str):
embedding_directory = [embedding_directory]
embedding_directory = expand_directory_list(embedding_directory)
valid_file = None
for embed_dir in embedding_directory:
embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name))
embed_dir = os.path.abspath(embed_dir)
try:
if os.path.commonpath((embed_dir, embed_path)) != embed_dir:
continue
except:
continue
if not os.path.isfile(embed_path):
extensions = [".safetensors", ".pt", ".bin"]
for x in extensions:
t = embed_path + x
if os.path.isfile(t):
valid_file = t
break
else:
valid_file = embed_path
if valid_file is not None:
break
if valid_file is None:
return None
embed_path = valid_file
embed_out = None
try:
if embed_path.lower().endswith(".safetensors"):
import safetensors.torch
embed = safetensors.torch.load_file(embed_path, device="cpu")
else:
if "weights_only" in torch.load.__code__.co_varnames:
embed = torch.load(embed_path, weights_only=True, map_location="cpu")
else:
embed = torch.load(embed_path, map_location="cpu")
except Exception:
logging.warning(
"{}\n\nerror loading embedding, skipping loading: {}".format(
traceback.format_exc(), embedding_name
)
)
return None
if embed_out is None:
if "string_to_param" in embed:
values = embed["string_to_param"].values()
embed_out = next(iter(values))
elif isinstance(embed, list):
out_list = []
for x in range(len(embed)):
for k in embed[x]:
t = embed[x][k]
if t.shape[-1] != embedding_size:
continue
out_list.append(t.reshape(-1, t.shape[-1]))
embed_out = torch.cat(out_list, dim=0)
elif embed_key is not None and embed_key in embed:
embed_out = embed[embed_key]
else:
values = embed.values()
embed_out = next(iter(values))
return embed_out
class SDTokenizer:
"""#### Class representing a Stable Diffusion tokenizer."""
def __init__(
self,
tokenizer_path: str = None,
max_length: int = 77,
pad_with_end: bool = True,
embedding_directory: str = None,
embedding_size: int = 768,
embedding_key: str = "clip_l",
tokenizer_class: type = CLIPTokenizerFast,
has_start_token: bool = True,
pad_to_max_length: bool = True,
min_length: int = None,
):
"""#### Initialize the SDTokenizer.
#### Args:
- `tokenizer_path` (str, optional): The path to the tokenizer. Defaults to None.
- `max_length` (int, optional): The maximum length of the input. Defaults to 77.
- `pad_with_end` (bool, optional): Whether to pad with the end token. Defaults to True.
- `embedding_directory` (str, optional): The directory for embeddings. Defaults to None.
- `embedding_size` (int, optional): The size of the embeddings. Defaults to 768.
- `embedding_key` (str, optional): The key for the embeddings. Defaults to "clip_l".
- `tokenizer_class` (type, optional): The tokenizer class. Defaults to CLIPTokenizer.
- `has_start_token` (bool, optional): Whether the tokenizer has a start token. Defaults to True.
- `pad_to_max_length` (bool, optional): Whether to pad to the maximum length. Defaults to True.
- `min_length` (int, optional): The minimum length of the input. Defaults to None.
"""
if tokenizer_path is None:
tokenizer_path = "_internal/sd1_tokenizer/"
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
self.max_length = max_length
self.min_length = min_length
empty = self.tokenizer("")["input_ids"]
if has_start_token:
self.tokens_start = 1
self.start_token = empty[0]
self.end_token = empty[1]
else:
self.tokens_start = 0
self.start_token = None
self.end_token = empty[0]
self.pad_with_end = pad_with_end
self.pad_to_max_length = pad_to_max_length
vocab = self.tokenizer.get_vocab()
self.inv_vocab = {v: k for k, v in vocab.items()}
self.embedding_directory = embedding_directory
self.max_word_length = 8
self.embedding_identifier = "embedding:"
self.embedding_size = embedding_size
self.embedding_key = embedding_key
def _try_get_embedding(self, embedding_name: str) -> tuple:
"""#### Try to get an embedding.
#### Args:
- `embedding_name` (str): The name of the embedding.
#### Returns:
- `tuple`: The embedding and any leftover text.
"""
embed = load_embed(
embedding_name,
self.embedding_directory,
self.embedding_size,
self.embedding_key,
)
if embed is None:
stripped = embedding_name.strip(",")
if len(stripped) < len(embedding_name):
embed = load_embed(
stripped,
self.embedding_directory,
self.embedding_size,
self.embedding_key,
)
return (embed, embedding_name[len(stripped) :])
return (embed, "")
def tokenize_with_weights(self, text: str, return_word_ids: bool = False) -> list:
"""#### Tokenize text with weights.
#### Args:
- `text` (str): The input text.
- `return_word_ids` (bool, optional): Whether to return word IDs. Defaults to False.
#### Returns:
- `list`: The tokenized text with weights.
"""
if self.pad_with_end:
pad_token = self.end_token
else:
pad_token = 0
text = escape_important(text)
parsed_weights = token_weights(text, 1.0)
# tokenize words
tokens = []
for weighted_segment, weight in parsed_weights:
to_tokenize = (
unescape_important(weighted_segment).replace("\n", " ").split(" ")
)
to_tokenize = [x for x in to_tokenize if x != ""]
for word in to_tokenize:
# if we find an embedding, deal with the embedding
if (
word.startswith(self.embedding_identifier)
and self.embedding_directory is not None
):
embedding_name = word[len(self.embedding_identifier) :].strip("\n")
embed, leftover = self._try_get_embedding(embedding_name)
if embed is None:
logging.warning(
f"warning, embedding:{embedding_name} does not exist, ignoring"
)
else:
if len(embed.shape) == 1:
tokens.append([(embed, weight)])
else:
tokens.append(
[(embed[x], weight) for x in range(embed.shape[0])]
)
print("loading ", embedding_name)
# if we accidentally have leftover text, continue parsing using leftover, else move on to next word
if leftover != "":
word = leftover
else:
continue
# parse word
tokens.append(
[
(t, weight)
for t in self.tokenizer(word)["input_ids"][
self.tokens_start : -1
]
]
)
# reshape token array to CLIP input size
batched_tokens = []
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0, 0))
batched_tokens.append(batch)
for i, t_group in enumerate(tokens):
# determine if we're going to try and keep the tokens in a single batch
is_large = len(t_group) >= self.max_word_length
while len(t_group) > 0:
if len(t_group) + len(batch) > self.max_length - 1:
remaining_length = self.max_length - len(batch) - 1
# break word in two and add end token
if is_large:
batch.extend(
[(t, w, i + 1) for t, w in t_group[:remaining_length]]
)
batch.append((self.end_token, 1.0, 0))
t_group = t_group[remaining_length:]
# add end token and pad
else:
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
# start new batch
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0, 0))
batched_tokens.append(batch)
else:
batch.extend([(t, w, i + 1) for t, w in t_group])
t_group = []
# fill last batch
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch)))
if self.min_length is not None and len(batch) < self.min_length:
batch.extend([(pad_token, 1.0, 0)] * (self.min_length - len(batch)))
if not return_word_ids:
batched_tokens = [[(t, w) for t, w, _ in x] for x in batched_tokens]
return batched_tokens
def untokenize(self, token_weight_pair: list) -> list:
"""#### Untokenize a list of token-weight pairs.
#### Args:
- `token_weight_pair` (list): The list of token-weight pairs.
#### Returns:
- `list`: The untokenized list.
"""
return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
class SD1Tokenizer:
"""#### Class representing the SD1Tokenizer."""
def __init__(self, embedding_directory: str = None, clip_name: str = "l", tokenizer: type = SDTokenizer):
"""#### Initialize the SD1Tokenizer.
#### Args:
- `embedding_directory` (str, optional): The directory for embeddings. Defaults to None.
- `clip_name` (str, optional): The name of the CLIP model. Defaults to "l".
- `tokenizer` (type, optional): The tokenizer class. Defaults to SDTokenizer.
"""
self.clip_name = clip_name
self.clip = "clip_{}".format(self.clip_name)
setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory))
def tokenize_with_weights(self, text: str, return_word_ids: bool = False) -> dict:
"""#### Tokenize text with weights.
#### Args:
- `text` (str): The input text.
- `return_word_ids` (bool, optional): Whether to return word IDs. Defaults to False.
#### Returns:
- `dict`: The tokenized text with weights.
"""
out = {}
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(
text, return_word_ids
)
return out
def untokenize(self, token_weight_pair: list) -> list:
"""#### Untokenize a list of token-weight pairs.
#### Args:
- `token_weight_pair` (list): The list of token-weight pairs.
#### Returns:
- `list`: The untokenized list.
"""
return getattr(self, self.clip).untokenize(token_weight_pair) |