File size: 12,798 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
 
 
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
 
 
d9a2e19
cfe609e
 
 
 
 
 
d9a2e19
cfe609e
d9a2e19
 
cfe609e
 
 
d9a2e19
cfe609e
 
 
 
 
d9a2e19
cfe609e
d9a2e19
 
 
 
 
 
 
 
cfe609e
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import logging
import math
import torch

from modules.Utilities import Latent
from modules.Device import Device
from modules.NeuralNetwork import unet
from modules.cond import cast, cond
from modules.sample import sampling


class BaseModel(torch.nn.Module):
    """#### Base class for models."""

    def __init__(

        self,

        model_config: object,

        model_type: sampling.ModelType = sampling.ModelType.EPS,

        device: torch.device = None,

        unet_model: object = unet.UNetModel1,

        flux: bool = False,

    ):
        """#### Initialize the BaseModel class.



        #### Args:

            - `model_config` (object): The model configuration.

            - `model_type` (sampling.ModelType, optional): The model type. Defaults to sampling.ModelType.EPS.

            - `device` (torch.device, optional): The device to use. Defaults to None.

            - `unet_model` (object, optional): The UNet model. Defaults to unet.UNetModel1.

        """
        super().__init__()

        unet_config = model_config.unet_config
        self.latent_format = model_config.latent_format
        self.model_config = model_config
        self.manual_cast_dtype = model_config.manual_cast_dtype
        self.device = device
        if flux:
            if not unet_config.get("disable_unet_model_creation", False):
                operations = model_config.custom_operations
                self.diffusion_model = unet_model(
                    **unet_config, device=device, operations=operations
                )
                logging.info(
                    "model weight dtype {}, manual cast: {}".format(
                        self.get_dtype(), self.manual_cast_dtype
                    )
                )
        else:
            if not unet_config.get("disable_unet_model_creation", False):
                if self.manual_cast_dtype is not None:
                    operations = cast.manual_cast
                else:
                    operations = cast.disable_weight_init
                self.diffusion_model = unet_model(
                    **unet_config, device=device, operations=operations
                )
        self.model_type = model_type
        self.model_sampling = sampling.model_sampling(
            model_config, model_type, flux=flux
        )

        self.adm_channels = unet_config.get("adm_in_channels", None)
        if self.adm_channels is None:
            self.adm_channels = 0

        self.concat_keys = ()
        logging.info("model_type {}".format(model_type.name))
        logging.debug("adm {}".format(self.adm_channels))
        self.memory_usage_factor = model_config.memory_usage_factor if flux else 2.0

    def apply_model(

        self,

        x: torch.Tensor,

        t: torch.Tensor,

        c_concat: torch.Tensor = None,

        c_crossattn: torch.Tensor = None,

        control: torch.Tensor = None,

        transformer_options: dict = {},

        **kwargs,

    ) -> torch.Tensor:
        """#### Apply the model to the input tensor.



        #### Args:

            - `x` (torch.Tensor): The input tensor.

            - `t` (torch.Tensor): The timestep tensor.

            - `c_concat` (torch.Tensor, optional): The concatenated condition tensor. Defaults to None.

            - `c_crossattn` (torch.Tensor, optional): The cross-attention condition tensor. Defaults to None.

            - `control` (torch.Tensor, optional): The control tensor. Defaults to None.

            - `transformer_options` (dict, optional): The transformer options. Defaults to {}.

            - `**kwargs`: Additional keyword arguments.



        #### Returns:

            - `torch.Tensor`: The output tensor.

        """
        sigma = t
        xc = self.model_sampling.calculate_input(sigma, x)

        # Optimize concatenation operation by avoiding unnecessary list creation
        if c_concat is not None:
            xc = torch.cat((xc, c_concat), dim=1)

        # Determine dtype once to avoid repeated calls to get_dtype()
        dtype = (
            self.manual_cast_dtype
            if self.manual_cast_dtype is not None
            else self.get_dtype()
        )

        # Batch operations to reduce overhead
        xc = xc.to(dtype)
        t = self.model_sampling.timestep(t).float()
        context = c_crossattn.to(dtype) if c_crossattn is not None else None

        # Process extra conditions more efficiently
        extra_conds = {}
        for name, value in kwargs.items():
            if hasattr(value, "dtype") and value.dtype not in (torch.int, torch.long):
                extra_conds[name] = value.to(dtype)
            else:
                extra_conds[name] = value

        # Run diffusion model and calculate denoised output
        model_output = self.diffusion_model(
            xc,
            t,
            context=context,
            control=control,
            transformer_options=transformer_options,
            **extra_conds,
        ).float()

        return self.model_sampling.calculate_denoised(sigma, model_output, x)

    def get_dtype(self) -> torch.dtype:
        """#### Get the data type of the model.



        #### Returns:

            - `torch.dtype`: The data type.

        """
        return self.diffusion_model.dtype

    def encode_adm(self, **kwargs) -> None:
        """#### Encode the ADM.



        #### Args:

            - `**kwargs`: Additional keyword arguments.



        #### Returns:

            - `None`: The encoded ADM.

        """
        return None

    def extra_conds(self, **kwargs) -> dict:
        """#### Get the extra conditions.



        #### Args:

            - `**kwargs`: Additional keyword arguments.



        #### Returns:

            - `dict`: The extra conditions.

        """
        out = {}
        adm = self.encode_adm(**kwargs)
        if adm is not None:
            out["y"] = cond.CONDRegular(adm)

        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            out["c_crossattn"] = cond.CONDCrossAttn(cross_attn)

        cross_attn_cnet = kwargs.get("cross_attn_controlnet", None)
        if cross_attn_cnet is not None:
            out["crossattn_controlnet"] = cond.CONDCrossAttn(cross_attn_cnet)

        return out

    def load_model_weights(self, sd: dict, unet_prefix: str = "") -> "BaseModel":
        """#### Load the model weights.



        #### Args:

            - `sd` (dict): The state dictionary.

            - `unet_prefix` (str, optional): The UNet prefix. Defaults to "".



        #### Returns:

            - `BaseModel`: The model with loaded weights.

        """
        to_load = {}
        keys = list(sd.keys())
        for k in keys:
            if k.startswith(unet_prefix):
                to_load[k[len(unet_prefix) :]] = sd.pop(k)

        to_load = self.model_config.process_unet_state_dict(to_load)
        m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
        if len(m) > 0:
            logging.warning("unet missing: {}".format(m))

        if len(u) > 0:
            logging.warning("unet unexpected: {}".format(u))
        del to_load
        return self

    def process_latent_in(self, latent: torch.Tensor) -> torch.Tensor:
        """#### Process the latent input.



        #### Args:

            - `latent` (torch.Tensor): The latent tensor.



        #### Returns:

            - `torch.Tensor`: The processed latent tensor.

        """
        return self.latent_format.process_in(latent)

    def process_latent_out(self, latent: torch.Tensor) -> torch.Tensor:
        """#### Process the latent output.



        #### Args:

            - `latent` (torch.Tensor): The latent tensor.



        #### Returns:

            - `torch.Tensor`: The processed latent tensor.

        """
        return self.latent_format.process_out(latent)

    def memory_required(self, input_shape: tuple) -> float:
        """#### Calculate the memory required for the model.



        #### Args:

            - `input_shape` (tuple): The input shape.



        #### Returns:

            - `float`: The memory required.

        """
        dtype = self.get_dtype()
        if self.manual_cast_dtype is not None:
            dtype = self.manual_cast_dtype
        # TODO: this needs to be tweaked
        area = input_shape[0] * math.prod(input_shape[2:])
        return (area * Device.dtype_size(dtype) * 0.01 * self.memory_usage_factor) * (
            1024 * 1024
        )


class BASE:
    """#### Base class for model configurations."""

    unet_config = {}
    unet_extra_config = {
        "num_heads": -1,
        "num_head_channels": 64,
    }

    required_keys = {}

    clip_prefix = []
    clip_vision_prefix = None
    noise_aug_config = None
    sampling_settings = {}
    latent_format = Latent.LatentFormat
    vae_key_prefix = ["first_stage_model."]
    text_encoder_key_prefix = ["cond_stage_model."]
    supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]

    memory_usage_factor = 2.0

    manual_cast_dtype = None
    custom_operations = None

    @classmethod
    def matches(cls, unet_config: dict, state_dict: dict = None) -> bool:
        """#### Check if the UNet configuration matches.



        #### Args:

            - `unet_config` (dict): The UNet configuration.

            - `state_dict` (dict, optional): The state dictionary. Defaults to None.



        #### Returns:

            - `bool`: Whether the configuration matches.

        """
        for k in cls.unet_config:
            if k not in unet_config or cls.unet_config[k] != unet_config[k]:
                return False
        if state_dict is not None:
            for k in cls.required_keys:
                if k not in state_dict:
                    return False
        return True

    def model_type(self, state_dict: dict, prefix: str = "") -> sampling.ModelType:
        """#### Get the model type.



        #### Args:

            - `state_dict` (dict): The state dictionary.

            - `prefix` (str, optional): The prefix. Defaults to "".



        #### Returns:

            - `sampling.ModelType`: The model type.

        """
        return sampling.ModelType.EPS

    def inpaint_model(self) -> bool:
        """#### Check if the model is an inpaint model.



        #### Returns:

            - `bool`: Whether the model is an inpaint model.

        """
        return self.unet_config["in_channels"] > 4

    def __init__(self, unet_config: dict):
        """#### Initialize the BASE class.



        #### Args:

            - `unet_config` (dict): The UNet configuration.

        """
        self.unet_config = unet_config.copy()
        self.sampling_settings = self.sampling_settings.copy()
        self.latent_format = self.latent_format()
        for x in self.unet_extra_config:
            self.unet_config[x] = self.unet_extra_config[x]

    def get_model(

        self, state_dict: dict, prefix: str = "", device: torch.device = None

    ) -> BaseModel:
        """#### Get the model.



        #### Args:

            - `state_dict` (dict): The state dictionary.

            - `prefix` (str, optional): The prefix. Defaults to "".

            - `device` (torch.device, optional): The device to use. Defaults to None.



        #### Returns:

            - `BaseModel`: The model.

        """
        out = BaseModel(
            self, model_type=self.model_type(state_dict, prefix), device=device
        )
        return out

    def process_unet_state_dict(self, state_dict: dict) -> dict:
        """#### Process the UNet state dictionary.



        #### Args:

            - `state_dict` (dict): The state dictionary.



        #### Returns:

            - `dict`: The processed state dictionary.

        """
        return state_dict

    def process_vae_state_dict(self, state_dict: dict) -> dict:
        """#### Process the VAE state dictionary.



        #### Args:

            - `state_dict` (dict): The state dictionary.



        #### Returns:

            - `dict`: The processed state dictionary.

        """
        return state_dict

    def set_inference_dtype(

        self, dtype: torch.dtype, manual_cast_dtype: torch.dtype

    ) -> None:
        """#### Set the inference data type.



        #### Args:

            - `dtype` (torch.dtype): The data type.

            - `manual_cast_dtype` (torch.dtype): The manual cast data type.

        """
        self.unet_config["dtype"] = dtype
        self.manual_cast_dtype = manual_cast_dtype