File size: 6,602 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch
from modules.Utilities import util
from modules.NeuralNetwork import unet

LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}


def load_lora(lora: dict, to_load: dict) -> dict:
    """#### Load a LoRA model.



    #### Args:

        - `lora` (dict): The LoRA model state dictionary.

        - `to_load` (dict): The keys to load from the LoRA model.



    #### Returns:

        - `dict`: The loaded LoRA model.

    """
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

        "{}.dora_scale".format(x)
        dora_scale = None

        regular_lora = "{}.lora_up.weight".format(x)
        "{}_lora.up.weight".format(x)
        "{}.lora_linear_layer.up.weight".format(x)
        A_name = None

        if regular_lora in lora.keys():
            A_name = regular_lora
            B_name = "{}.lora_down.weight".format(x)
            "{}.lora_mid.weight".format(x)

        if A_name is not None:
            mid = None
            patch_dict[to_load[x]] = (
                "lora",
                (lora[A_name], lora[B_name], alpha, mid, dora_scale),
            )
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
    return patch_dict


def model_lora_keys_clip(model: torch.nn.Module, key_map: dict = {}) -> dict:
    """#### Get the keys for a LoRA model's CLIP component.



    #### Args:

        - `model` (torch.nn.Module): The LoRA model.

        - `key_map` (dict, optional): The key map. Defaults to {}.



    #### Returns:

        - `dict`: The keys for the CLIP component.

    """
    sdk = model.state_dict().keys()

    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
    for b in range(32):
        for c in LORA_CLIP_MAP:
            k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
                key_map[lora_key] = k
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(
                    b, LORA_CLIP_MAP[c]
                )  # SDXL base
                key_map[lora_key] = k
                lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(
                    b, c
                )  # diffusers lora
                key_map[lora_key] = k
    return key_map


def model_lora_keys_unet(model: torch.nn.Module, key_map: dict = {}) -> dict:
    """#### Get the keys for a LoRA model's UNet component.



    #### Args:

        - `model` (torch.nn.Module): The LoRA model.

        - `key_map` (dict, optional): The key map. Defaults to {}.



    #### Returns:

        - `dict`: The keys for the UNet component.

    """
    sdk = model.state_dict().keys()

    for k in sdk:
        if k.startswith("diffusion_model.") and k.endswith(".weight"):
            key_lora = k[len("diffusion_model.") : -len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = k
            key_map["lora_prior_unet_{}".format(key_lora)] = k  # cascade lora:

    diffusers_keys = unet.unet_to_diffusers(model.model_config.unet_config)
    for k in diffusers_keys:
        if k.endswith(".weight"):
            unet_key = "diffusion_model.{}".format(diffusers_keys[k])
            key_lora = k[: -len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = unet_key

            diffusers_lora_prefix = ["", "unet."]
            for p in diffusers_lora_prefix:
                diffusers_lora_key = "{}{}".format(
                    p, k[: -len(".weight")].replace(".to_", ".processor.to_")
                )
                if diffusers_lora_key.endswith(".to_out.0"):
                    diffusers_lora_key = diffusers_lora_key[:-2]
                key_map[diffusers_lora_key] = unet_key
    return key_map


def load_lora_for_models(

    model: object, clip: object, lora: dict, strength_model: float, strength_clip: float

) -> tuple:
    """#### Load a LoRA model for the given models.



    #### Args:

        - `model` (object): The model.

        - `clip` (object): The CLIP model.

        - `lora` (dict): The LoRA model state dictionary.

        - `strength_model` (float): The strength of the model.

        - `strength_clip` (float): The strength of the CLIP model.



    #### Returns:

        - `tuple`: The new model patcher and CLIP model.

    """
    key_map = {}
    if model is not None:
        key_map = model_lora_keys_unet(model.model, key_map)
    if clip is not None:
        key_map = model_lora_keys_clip(clip.cond_stage_model, key_map)

    loaded = load_lora(lora, key_map)
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)

    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)

    return (new_modelpatcher, new_clip)


class LoraLoader:
    """#### Class for loading LoRA models."""

    def __init__(self):
        """#### Initialize the LoraLoader class."""
        self.loaded_lora = None

    def load_lora(

        self,

        model: object,

        clip: object,

        lora_name: str,

        strength_model: float,

        strength_clip: float,

    ) -> tuple:
        """#### Load a LoRA model.



        #### Args:

            - `model` (object): The model.

            - `clip` (object): The CLIP model.

            - `lora_name` (str): The name of the LoRA model.

            - `strength_model` (float): The strength of the model.

            - `strength_clip` (float): The strength of the CLIP model.



        #### Returns:

            - `tuple`: The new model patcher and CLIP model.

        """
        lora_path = util.get_full_path("loras", lora_name)
        lora = None
        if lora is None:
            lora = util.load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = load_lora_for_models(
            model, clip, lora, strength_model, strength_clip
        )
        return (model_lora, clip_lora)