Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,602 Bytes
d9a2e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import torch
from modules.Utilities import util
from modules.NeuralNetwork import unet
LORA_CLIP_MAP = {
"mlp.fc1": "mlp_fc1",
"mlp.fc2": "mlp_fc2",
"self_attn.k_proj": "self_attn_k_proj",
"self_attn.q_proj": "self_attn_q_proj",
"self_attn.v_proj": "self_attn_v_proj",
"self_attn.out_proj": "self_attn_out_proj",
}
def load_lora(lora: dict, to_load: dict) -> dict:
"""#### Load a LoRA model.
#### Args:
- `lora` (dict): The LoRA model state dictionary.
- `to_load` (dict): The keys to load from the LoRA model.
#### Returns:
- `dict`: The loaded LoRA model.
"""
patch_dict = {}
loaded_keys = set()
for x in to_load:
alpha_name = "{}.alpha".format(x)
alpha = None
if alpha_name in lora.keys():
alpha = lora[alpha_name].item()
loaded_keys.add(alpha_name)
"{}.dora_scale".format(x)
dora_scale = None
regular_lora = "{}.lora_up.weight".format(x)
"{}_lora.up.weight".format(x)
"{}.lora_linear_layer.up.weight".format(x)
A_name = None
if regular_lora in lora.keys():
A_name = regular_lora
B_name = "{}.lora_down.weight".format(x)
"{}.lora_mid.weight".format(x)
if A_name is not None:
mid = None
patch_dict[to_load[x]] = (
"lora",
(lora[A_name], lora[B_name], alpha, mid, dora_scale),
)
loaded_keys.add(A_name)
loaded_keys.add(B_name)
return patch_dict
def model_lora_keys_clip(model: torch.nn.Module, key_map: dict = {}) -> dict:
"""#### Get the keys for a LoRA model's CLIP component.
#### Args:
- `model` (torch.nn.Module): The LoRA model.
- `key_map` (dict, optional): The key map. Defaults to {}.
#### Returns:
- `dict`: The keys for the CLIP component.
"""
sdk = model.state_dict().keys()
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
for b in range(32):
for c in LORA_CLIP_MAP:
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
key_map[lora_key] = k
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(
b, LORA_CLIP_MAP[c]
) # SDXL base
key_map[lora_key] = k
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(
b, c
) # diffusers lora
key_map[lora_key] = k
return key_map
def model_lora_keys_unet(model: torch.nn.Module, key_map: dict = {}) -> dict:
"""#### Get the keys for a LoRA model's UNet component.
#### Args:
- `model` (torch.nn.Module): The LoRA model.
- `key_map` (dict, optional): The key map. Defaults to {}.
#### Returns:
- `dict`: The keys for the UNet component.
"""
sdk = model.state_dict().keys()
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"):
key_lora = k[len("diffusion_model.") : -len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = k
key_map["lora_prior_unet_{}".format(key_lora)] = k # cascade lora:
diffusers_keys = unet.unet_to_diffusers(model.model_config.unet_config)
for k in diffusers_keys:
if k.endswith(".weight"):
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
key_lora = k[: -len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = unet_key
diffusers_lora_prefix = ["", "unet."]
for p in diffusers_lora_prefix:
diffusers_lora_key = "{}{}".format(
p, k[: -len(".weight")].replace(".to_", ".processor.to_")
)
if diffusers_lora_key.endswith(".to_out.0"):
diffusers_lora_key = diffusers_lora_key[:-2]
key_map[diffusers_lora_key] = unet_key
return key_map
def load_lora_for_models(
model: object, clip: object, lora: dict, strength_model: float, strength_clip: float
) -> tuple:
"""#### Load a LoRA model for the given models.
#### Args:
- `model` (object): The model.
- `clip` (object): The CLIP model.
- `lora` (dict): The LoRA model state dictionary.
- `strength_model` (float): The strength of the model.
- `strength_clip` (float): The strength of the CLIP model.
#### Returns:
- `tuple`: The new model patcher and CLIP model.
"""
key_map = {}
if model is not None:
key_map = model_lora_keys_unet(model.model, key_map)
if clip is not None:
key_map = model_lora_keys_clip(clip.cond_stage_model, key_map)
loaded = load_lora(lora, key_map)
new_modelpatcher = model.clone()
k = new_modelpatcher.add_patches(loaded, strength_model)
new_clip = clip.clone()
k1 = new_clip.add_patches(loaded, strength_clip)
k = set(k)
k1 = set(k1)
return (new_modelpatcher, new_clip)
class LoraLoader:
"""#### Class for loading LoRA models."""
def __init__(self):
"""#### Initialize the LoraLoader class."""
self.loaded_lora = None
def load_lora(
self,
model: object,
clip: object,
lora_name: str,
strength_model: float,
strength_clip: float,
) -> tuple:
"""#### Load a LoRA model.
#### Args:
- `model` (object): The model.
- `clip` (object): The CLIP model.
- `lora_name` (str): The name of the LoRA model.
- `strength_model` (float): The strength of the model.
- `strength_clip` (float): The strength of the CLIP model.
#### Returns:
- `tuple`: The new model patcher and CLIP model.
"""
lora_path = util.get_full_path("loras", lora_name)
lora = None
if lora is None:
lora = util.load_torch_file(lora_path, safe_load=True)
self.loaded_lora = (lora_path, lora)
model_lora, clip_lora = load_lora_for_models(
model, clip, lora, strength_model, strength_clip
)
return (model_lora, clip_lora)
|