File size: 10,543 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
"""

Tiny AutoEncoder for Stable Diffusion

(DNN for encoding / decoding SD's latent space)

"""

# TODO: Check if multiprocessing is possible for this module
from PIL import Image
import numpy as np
from sympy import im
import torch
from modules.Utilities import util
import torch.nn as nn

from modules.cond import cast
from modules.user import app_instance


def conv(n_in: int, n_out: int, **kwargs) -> cast.disable_weight_init.Conv2d:
    """#### Create a convolutional layer.



    #### Args:

        - `n_in` (int): The number of input channels.

        - `n_out` (int): The number of output channels.



    #### Returns:

        - `torch.nn.Module`: The convolutional layer.

    """
    return cast.disable_weight_init.Conv2d(n_in, n_out, 3, padding=1, **kwargs)


class Clamp(nn.Module):
    """#### Class representing a clamping layer."""

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """#### Forward pass of the clamping layer.



        #### Args:

            - `x` (torch.Tensor): The input tensor.



        #### Returns:

            - `torch.Tensor`: The clamped tensor.

        """
        return torch.tanh(x / 3) * 3


class Block(nn.Module):
    """#### Class representing a block layer."""

    def __init__(self, n_in: int, n_out: int):
        """#### Initialize the block layer.



        #### Args:

            - `n_in` (int): The number of input channels.

            - `n_out` (int): The number of output channels.



        #### Returns:

            - `Block`: The block layer.

        """
        super().__init__()
        self.conv = nn.Sequential(
            conv(n_in, n_out),
            nn.ReLU(),
            conv(n_out, n_out),
            nn.ReLU(),
            conv(n_out, n_out),
        )
        self.skip = (
            cast.disable_weight_init.Conv2d(n_in, n_out, 1, bias=False)
            if n_in != n_out
            else nn.Identity()
        )
        self.fuse = nn.ReLU()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.fuse(self.conv(x) + self.skip(x))


def Encoder2(latent_channels: int = 4) -> nn.Sequential:
    """#### Create an encoder.



    #### Args:

        - `latent_channels` (int, optional): The number of latent channels. Defaults to 4.



    #### Returns:

        - `torch.nn.Module`: The encoder.

    """
    return nn.Sequential(
        conv(3, 64),
        Block(64, 64),
        conv(64, 64, stride=2, bias=False),
        Block(64, 64),
        Block(64, 64),
        Block(64, 64),
        conv(64, 64, stride=2, bias=False),
        Block(64, 64),
        Block(64, 64),
        Block(64, 64),
        conv(64, 64, stride=2, bias=False),
        Block(64, 64),
        Block(64, 64),
        Block(64, 64),
        conv(64, latent_channels),
    )


def Decoder2(latent_channels: int = 4) -> nn.Sequential:
    """#### Create a decoder.



    #### Args:

        - `latent_channels` (int, optional): The number of latent channels. Defaults to 4.



    #### Returns:

        - `torch.nn.Module`: The decoder.

    """
    return nn.Sequential(
        Clamp(),
        conv(latent_channels, 64),
        nn.ReLU(),
        Block(64, 64),
        Block(64, 64),
        Block(64, 64),
        nn.Upsample(scale_factor=2),
        conv(64, 64, bias=False),
        Block(64, 64),
        Block(64, 64),
        Block(64, 64),
        nn.Upsample(scale_factor=2),
        conv(64, 64, bias=False),
        Block(64, 64),
        Block(64, 64),
        Block(64, 64),
        nn.Upsample(scale_factor=2),
        conv(64, 64, bias=False),
        Block(64, 64),
        conv(64, 3),
    )


class TAESD(nn.Module):
    """#### Class representing a Tiny AutoEncoder for Stable Diffusion.



    #### Attributes:

        - `latent_magnitude` (float): Magnitude of the latent space.

        - `latent_shift` (float): Shift value for the latent space.

        - `vae_shift` (torch.nn.Parameter): Shift parameter for the VAE.

        - `vae_scale` (torch.nn.Parameter): Scale parameter for the VAE.

        - `taesd_encoder` (Encoder2): Encoder network for the TAESD.

        - `taesd_decoder` (Decoder2): Decoder network for the TAESD.



    #### Args:

        - `encoder_path` (str, optional): Path to the encoder model file. Defaults to None.

        - `decoder_path` (str, optional): Path to the decoder model file. Defaults to "./_internal/vae_approx/taesd_decoder.safetensors".

        - `latent_channels` (int, optional): Number of channels in the latent space. Defaults to 4.



    #### Methods:

        - `scale_latents(x)`:

            Scales raw latents to the range [0, 1].

        - `unscale_latents(x)`:

            Unscales latents from the range [0, 1] to raw latents.

        - `decode(x)`:

            Decodes the given latent representation to the original space.

        - `encode(x)`:

            Encodes the given input to the latent space.

    """

    latent_magnitude = 3
    latent_shift = 0.5

    def __init__(

        self,

        encoder_path: str = None,

        decoder_path: str = None,

        latent_channels: int = 4,

    ):
        """#### Initialize the TAESD model.



        #### Args:

            - `encoder_path` (str, optional): Path to the encoder model file. Defaults to None.

            - `decoder_path` (str, optional): Path to the decoder model file. Defaults to "./_internal/vae_approx/taesd_decoder.safetensors".

            - `latent_channels` (int, optional): Number of channels in the latent space. Defaults to 4.

        """
        super().__init__()
        self.vae_shift = torch.nn.Parameter(torch.tensor(0.0))
        self.vae_scale = torch.nn.Parameter(torch.tensor(1.0))
        self.taesd_encoder = Encoder2(latent_channels)
        self.taesd_decoder = Decoder2(latent_channels)
        decoder_path = (
            "./_internal/vae_approx/taesd_decoder.safetensors"
            if decoder_path is None
            else decoder_path
        )
        if encoder_path is not None:
            self.taesd_encoder.load_state_dict(
                util.load_torch_file(encoder_path, safe_load=True)
            )
        if decoder_path is not None:
            self.taesd_decoder.load_state_dict(
                util.load_torch_file(decoder_path, safe_load=True)
            )

    @staticmethod
    def scale_latents(x: torch.Tensor) -> torch.Tensor:
        """#### Scales raw latents to the range [0, 1].



        #### Args:

            - `x` (torch.Tensor): The raw latents.



        #### Returns:

            - `torch.Tensor`: The scaled latents.

        """
        return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1)

    @staticmethod
    def unscale_latents(x: torch.Tensor) -> torch.Tensor:
        """#### Unscales latents from the range [0, 1] to raw latents.



        #### Args:

            - `x` (torch.Tensor): The scaled latents.



        #### Returns:

            - `torch.Tensor`: The raw latents.

        """
        return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)

    def decode(self, x: torch.Tensor) -> torch.Tensor:
        """#### Decodes the given latent representation to the original space.



        #### Args:

            - `x` (torch.Tensor): The latent representation.



        #### Returns:

            - `torch.Tensor`: The decoded representation.

        """
        device = next(self.taesd_decoder.parameters()).device
        x = x.to(device)
        x_sample = self.taesd_decoder((x - self.vae_shift) * self.vae_scale)
        x_sample = x_sample.sub(0.5).mul(2)
        return x_sample

    def encode(self, x: torch.Tensor) -> torch.Tensor:
        """#### Encodes the given input to the latent space.



        #### Args:

            - `x` (torch.Tensor): The input.



        #### Returns:

            - `torch.Tensor`: The latent representation.

        """
        device = next(self.taesd_encoder.parameters()).device
        x = x.to(device)
        return (self.taesd_encoder(x * 0.5 + 0.5) / self.vae_scale) + self.vae_shift


def taesd_preview(x: torch.Tensor, flux: bool = False):
    """#### Preview the batched latent tensors as images.

    

    #### Args:

        - `x` (torch.Tensor): Input latent tensor with shape [B,C,H,W] 

        - `flux` (bool, optional): Whether using flux model (for channel ordering). Defaults to False.

    """
    if app_instance.app.previewer_var.get() is True:
        taesd_instance = TAESD()
        
        # Handle channel dimension
        if x.shape[1] != 4:
            desired_channels = 4
            current_channels = x.shape[1]
            
            if current_channels > desired_channels:
                x = x[:, :desired_channels, :, :]
            else:
                padding = torch.zeros(x.shape[0], desired_channels - current_channels, 
                                   x.shape[2], x.shape[3], device=x.device)
                x = torch.cat([x, padding], dim=1)

        # Process entire batch at once
        decoded_batch = taesd_instance.decode(x)
        
        images = []
        
        # Convert each image in batch 
        for decoded in decoded_batch:
            # Handle channel dimension
            if decoded.shape[0] == 1:
                decoded = decoded.repeat(3, 1, 1)
                
            # Apply different normalization for flux vs standard mode
            if flux:
                # For flux: Assume BGR ordering and different normalization
                decoded = decoded[[2,1,0], :, :] # BGR -> RGB
                # Adjust normalization for flux model range
                decoded = decoded.clamp(-1, 1)
                decoded = (decoded + 1.0) * 0.5 # Scale from [-1,1] to [0,1]
            else:
                # Standard normalization
                decoded = (decoded + 1.0) / 2.0
            
            # Convert to numpy and uint8
            image_np = (decoded.cpu().detach().numpy() * 255.0)
            image_np = np.transpose(image_np, (1, 2, 0))
            image_np = np.clip(image_np, 0, 255).astype(np.uint8)
            
            # Create PIL Image
            img = Image.fromarray(image_np, mode='RGB')
            images.append(img)
            
        # Update display with all images
        app_instance.app.update_image(images)
    else:
        pass