Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,543 Bytes
d9a2e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
"""
Tiny AutoEncoder for Stable Diffusion
(DNN for encoding / decoding SD's latent space)
"""
# TODO: Check if multiprocessing is possible for this module
from PIL import Image
import numpy as np
from sympy import im
import torch
from modules.Utilities import util
import torch.nn as nn
from modules.cond import cast
from modules.user import app_instance
def conv(n_in: int, n_out: int, **kwargs) -> cast.disable_weight_init.Conv2d:
"""#### Create a convolutional layer.
#### Args:
- `n_in` (int): The number of input channels.
- `n_out` (int): The number of output channels.
#### Returns:
- `torch.nn.Module`: The convolutional layer.
"""
return cast.disable_weight_init.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
class Clamp(nn.Module):
"""#### Class representing a clamping layer."""
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""#### Forward pass of the clamping layer.
#### Args:
- `x` (torch.Tensor): The input tensor.
#### Returns:
- `torch.Tensor`: The clamped tensor.
"""
return torch.tanh(x / 3) * 3
class Block(nn.Module):
"""#### Class representing a block layer."""
def __init__(self, n_in: int, n_out: int):
"""#### Initialize the block layer.
#### Args:
- `n_in` (int): The number of input channels.
- `n_out` (int): The number of output channels.
#### Returns:
- `Block`: The block layer.
"""
super().__init__()
self.conv = nn.Sequential(
conv(n_in, n_out),
nn.ReLU(),
conv(n_out, n_out),
nn.ReLU(),
conv(n_out, n_out),
)
self.skip = (
cast.disable_weight_init.Conv2d(n_in, n_out, 1, bias=False)
if n_in != n_out
else nn.Identity()
)
self.fuse = nn.ReLU()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.fuse(self.conv(x) + self.skip(x))
def Encoder2(latent_channels: int = 4) -> nn.Sequential:
"""#### Create an encoder.
#### Args:
- `latent_channels` (int, optional): The number of latent channels. Defaults to 4.
#### Returns:
- `torch.nn.Module`: The encoder.
"""
return nn.Sequential(
conv(3, 64),
Block(64, 64),
conv(64, 64, stride=2, bias=False),
Block(64, 64),
Block(64, 64),
Block(64, 64),
conv(64, 64, stride=2, bias=False),
Block(64, 64),
Block(64, 64),
Block(64, 64),
conv(64, 64, stride=2, bias=False),
Block(64, 64),
Block(64, 64),
Block(64, 64),
conv(64, latent_channels),
)
def Decoder2(latent_channels: int = 4) -> nn.Sequential:
"""#### Create a decoder.
#### Args:
- `latent_channels` (int, optional): The number of latent channels. Defaults to 4.
#### Returns:
- `torch.nn.Module`: The decoder.
"""
return nn.Sequential(
Clamp(),
conv(latent_channels, 64),
nn.ReLU(),
Block(64, 64),
Block(64, 64),
Block(64, 64),
nn.Upsample(scale_factor=2),
conv(64, 64, bias=False),
Block(64, 64),
Block(64, 64),
Block(64, 64),
nn.Upsample(scale_factor=2),
conv(64, 64, bias=False),
Block(64, 64),
Block(64, 64),
Block(64, 64),
nn.Upsample(scale_factor=2),
conv(64, 64, bias=False),
Block(64, 64),
conv(64, 3),
)
class TAESD(nn.Module):
"""#### Class representing a Tiny AutoEncoder for Stable Diffusion.
#### Attributes:
- `latent_magnitude` (float): Magnitude of the latent space.
- `latent_shift` (float): Shift value for the latent space.
- `vae_shift` (torch.nn.Parameter): Shift parameter for the VAE.
- `vae_scale` (torch.nn.Parameter): Scale parameter for the VAE.
- `taesd_encoder` (Encoder2): Encoder network for the TAESD.
- `taesd_decoder` (Decoder2): Decoder network for the TAESD.
#### Args:
- `encoder_path` (str, optional): Path to the encoder model file. Defaults to None.
- `decoder_path` (str, optional): Path to the decoder model file. Defaults to "./_internal/vae_approx/taesd_decoder.safetensors".
- `latent_channels` (int, optional): Number of channels in the latent space. Defaults to 4.
#### Methods:
- `scale_latents(x)`:
Scales raw latents to the range [0, 1].
- `unscale_latents(x)`:
Unscales latents from the range [0, 1] to raw latents.
- `decode(x)`:
Decodes the given latent representation to the original space.
- `encode(x)`:
Encodes the given input to the latent space.
"""
latent_magnitude = 3
latent_shift = 0.5
def __init__(
self,
encoder_path: str = None,
decoder_path: str = None,
latent_channels: int = 4,
):
"""#### Initialize the TAESD model.
#### Args:
- `encoder_path` (str, optional): Path to the encoder model file. Defaults to None.
- `decoder_path` (str, optional): Path to the decoder model file. Defaults to "./_internal/vae_approx/taesd_decoder.safetensors".
- `latent_channels` (int, optional): Number of channels in the latent space. Defaults to 4.
"""
super().__init__()
self.vae_shift = torch.nn.Parameter(torch.tensor(0.0))
self.vae_scale = torch.nn.Parameter(torch.tensor(1.0))
self.taesd_encoder = Encoder2(latent_channels)
self.taesd_decoder = Decoder2(latent_channels)
decoder_path = (
"./_internal/vae_approx/taesd_decoder.safetensors"
if decoder_path is None
else decoder_path
)
if encoder_path is not None:
self.taesd_encoder.load_state_dict(
util.load_torch_file(encoder_path, safe_load=True)
)
if decoder_path is not None:
self.taesd_decoder.load_state_dict(
util.load_torch_file(decoder_path, safe_load=True)
)
@staticmethod
def scale_latents(x: torch.Tensor) -> torch.Tensor:
"""#### Scales raw latents to the range [0, 1].
#### Args:
- `x` (torch.Tensor): The raw latents.
#### Returns:
- `torch.Tensor`: The scaled latents.
"""
return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1)
@staticmethod
def unscale_latents(x: torch.Tensor) -> torch.Tensor:
"""#### Unscales latents from the range [0, 1] to raw latents.
#### Args:
- `x` (torch.Tensor): The scaled latents.
#### Returns:
- `torch.Tensor`: The raw latents.
"""
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
def decode(self, x: torch.Tensor) -> torch.Tensor:
"""#### Decodes the given latent representation to the original space.
#### Args:
- `x` (torch.Tensor): The latent representation.
#### Returns:
- `torch.Tensor`: The decoded representation.
"""
device = next(self.taesd_decoder.parameters()).device
x = x.to(device)
x_sample = self.taesd_decoder((x - self.vae_shift) * self.vae_scale)
x_sample = x_sample.sub(0.5).mul(2)
return x_sample
def encode(self, x: torch.Tensor) -> torch.Tensor:
"""#### Encodes the given input to the latent space.
#### Args:
- `x` (torch.Tensor): The input.
#### Returns:
- `torch.Tensor`: The latent representation.
"""
device = next(self.taesd_encoder.parameters()).device
x = x.to(device)
return (self.taesd_encoder(x * 0.5 + 0.5) / self.vae_scale) + self.vae_shift
def taesd_preview(x: torch.Tensor, flux: bool = False):
"""#### Preview the batched latent tensors as images.
#### Args:
- `x` (torch.Tensor): Input latent tensor with shape [B,C,H,W]
- `flux` (bool, optional): Whether using flux model (for channel ordering). Defaults to False.
"""
if app_instance.app.previewer_var.get() is True:
taesd_instance = TAESD()
# Handle channel dimension
if x.shape[1] != 4:
desired_channels = 4
current_channels = x.shape[1]
if current_channels > desired_channels:
x = x[:, :desired_channels, :, :]
else:
padding = torch.zeros(x.shape[0], desired_channels - current_channels,
x.shape[2], x.shape[3], device=x.device)
x = torch.cat([x, padding], dim=1)
# Process entire batch at once
decoded_batch = taesd_instance.decode(x)
images = []
# Convert each image in batch
for decoded in decoded_batch:
# Handle channel dimension
if decoded.shape[0] == 1:
decoded = decoded.repeat(3, 1, 1)
# Apply different normalization for flux vs standard mode
if flux:
# For flux: Assume BGR ordering and different normalization
decoded = decoded[[2,1,0], :, :] # BGR -> RGB
# Adjust normalization for flux model range
decoded = decoded.clamp(-1, 1)
decoded = (decoded + 1.0) * 0.5 # Scale from [-1,1] to [0,1]
else:
# Standard normalization
decoded = (decoded + 1.0) / 2.0
# Convert to numpy and uint8
image_np = (decoded.cpu().detach().numpy() * 255.0)
image_np = np.transpose(image_np, (1, 2, 0))
image_np = np.clip(image_np, 0, 255).astype(np.uint8)
# Create PIL Image
img = Image.fromarray(image_np, mode='RGB')
images.append(img)
# Update display with all images
app_instance.app.update_image(images)
else:
pass
|