Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,737 Bytes
d9a2e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
from abc import abstractmethod
from typing import Optional, Any, Dict
import torch
from modules.NeuralNetwork import transformer
import torch.nn as nn
import torch.nn.functional as F
from modules.Attention import Attention
from modules.cond import cast
from modules.sample import sampling_util
oai_ops = cast.disable_weight_init
class TimestepBlock1(nn.Module):
"""#### Abstract class representing a timestep block."""
@abstractmethod
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
"""#### Forward pass for the timestep block.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `emb` (torch.Tensor): The embedding tensor.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
pass
def forward_timestep_embed1(
ts: nn.ModuleList,
x: torch.Tensor,
emb: torch.Tensor,
context: Optional[torch.Tensor] = None,
transformer_options: Optional[Dict[str, Any]] = {},
output_shape: Optional[torch.Size] = None,
time_context: Optional[torch.Tensor] = None,
num_video_frames: Optional[int] = None,
image_only_indicator: Optional[bool] = None,
) -> torch.Tensor:
"""#### Forward pass for timestep embedding.
#### Args:
- `ts` (nn.ModuleList): The list of timestep blocks.
- `x` (torch.Tensor): The input tensor.
- `emb` (torch.Tensor): The embedding tensor.
- `context` (torch.Tensor, optional): The context tensor. Defaults to None.
- `transformer_options` (dict, optional): The transformer options. Defaults to {}.
- `output_shape` (torch.Size, optional): The output shape. Defaults to None.
- `time_context` (torch.Tensor, optional): The time context tensor. Defaults to None.
- `num_video_frames` (int, optional): The number of video frames. Defaults to None.
- `image_only_indicator` (bool, optional): The image only indicator. Defaults to None.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
for layer in ts:
if isinstance(layer, TimestepBlock1):
x = layer(x, emb)
elif isinstance(layer, transformer.SpatialTransformer):
x = layer(x, context, transformer_options)
if "transformer_index" in transformer_options:
transformer_options["transformer_index"] += 1
elif isinstance(layer, Upsample1):
x = layer(x, output_shape=output_shape)
else:
x = layer(x)
return x
class Upsample1(nn.Module):
"""#### Class representing an upsample layer."""
def __init__(
self,
channels: int,
use_conv: bool,
dims: int = 2,
out_channels: Optional[int] = None,
padding: int = 1,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
operations: Any = oai_ops,
):
"""#### Initialize the upsample layer.
#### Args:
- `channels` (int): The number of input channels.
- `use_conv` (bool): Whether to use convolution.
- `dims` (int, optional): The number of dimensions. Defaults to 2.
- `out_channels` (int, optional): The number of output channels. Defaults to None.
- `padding` (int, optional): The padding size. Defaults to 1.
- `dtype` (torch.dtype, optional): The data type. Defaults to None.
- `device` (torch.device, optional): The device. Defaults to None.
- `operations` (any, optional): The operations. Defaults to oai_ops.
"""
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = operations.conv_nd(
dims,
self.channels,
self.out_channels,
3,
padding=padding,
dtype=dtype,
device=device,
)
def forward(
self, x: torch.Tensor, output_shape: Optional[torch.Size] = None
) -> torch.Tensor:
"""#### Forward pass for the upsample layer.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `output_shape` (torch.Size, optional): The output shape. Defaults to None.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
assert x.shape[1] == self.channels
shape = [x.shape[2] * 2, x.shape[3] * 2]
if output_shape is not None:
shape[0] = output_shape[2]
shape[1] = output_shape[3]
x = F.interpolate(x, size=shape, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
class Downsample1(nn.Module):
"""#### Class representing a downsample layer."""
def __init__(
self,
channels: int,
use_conv: bool,
dims: int = 2,
out_channels: Optional[int] = None,
padding: int = 1,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
operations: Any = oai_ops,
):
"""#### Initialize the downsample layer.
#### Args:
- `channels` (int): The number of input channels.
- `use_conv` (bool): Whether to use convolution.
- `dims` (int, optional): The number of dimensions. Defaults to 2.
- `out_channels` (int, optional): The number of output channels. Defaults to None.
- `padding` (int, optional): The padding size. Defaults to 1.
- `dtype` (torch.dtype, optional): The data type. Defaults to None.
- `device` (torch.device, optional): The device. Defaults to None.
- `operations` (any, optional): The operations. Defaults to oai_ops.
"""
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
self.op = operations.conv_nd(
dims,
self.channels,
self.out_channels,
3,
stride=stride,
padding=padding,
dtype=dtype,
device=device,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""#### Forward pass for the downsample layer.
#### Args:
- `x` (torch.Tensor): The input tensor.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
assert x.shape[1] == self.channels
return self.op(x)
class ResBlock1(TimestepBlock1):
"""#### Class representing a residual block layer."""
def __init__(
self,
channels: int,
emb_channels: int,
dropout: float,
out_channels: Optional[int] = None,
use_conv: bool = False,
use_scale_shift_norm: bool = False,
dims: int = 2,
use_checkpoint: bool = False,
up: bool = False,
down: bool = False,
kernel_size: int = 3,
exchange_temb_dims: bool = False,
skip_t_emb: bool = False,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
operations: Any = oai_ops,
):
"""#### Initialize the residual block layer.
#### Args:
- `channels` (int): The number of input channels.
- `emb_channels` (int): The number of embedding channels.
- `dropout` (float): The dropout rate.
- `out_channels` (int, optional): The number of output channels. Defaults to None.
- `use_conv` (bool, optional): Whether to use convolution. Defaults to False.
- `use_scale_shift_norm` (bool, optional): Whether to use scale shift normalization. Defaults to False.
- `dims` (int, optional): The number of dimensions. Defaults to 2.
- `use_checkpoint` (bool, optional): Whether to use checkpointing. Defaults to False.
- `up` (bool, optional): Whether to use upsampling. Defaults to False.
- `down` (bool, optional): Whether to use downsampling. Defaults to False.
- `kernel_size` (int, optional): The kernel size. Defaults to 3.
- `exchange_temb_dims` (bool, optional): Whether to exchange embedding dimensions. Defaults to False.
- `skip_t_emb` (bool, optional): Whether to skip embedding. Defaults to False.
- `dtype` (torch.dtype, optional): The data type. Defaults to None.
- `device` (torch.device, optional): The device. Defaults to None.
- `operations` (any, optional): The operations. Defaults to oai_ops.
"""
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_checkpoint = use_checkpoint
self.use_scale_shift_norm = use_scale_shift_norm
self.exchange_temb_dims = exchange_temb_dims
padding = kernel_size // 2
self.in_layers = nn.Sequential(
operations.GroupNorm(32, channels, dtype=dtype, device=device),
nn.SiLU(),
operations.conv_nd(
dims,
channels,
self.out_channels,
kernel_size,
padding=padding,
dtype=dtype,
device=device,
),
)
self.updown = up or down
self.h_upd = self.x_upd = nn.Identity()
self.skip_t_emb = skip_t_emb
self.emb_layers = nn.Sequential(
nn.SiLU(),
operations.Linear(
emb_channels,
(2 * self.out_channels if use_scale_shift_norm else self.out_channels),
dtype=dtype,
device=device,
),
)
self.out_layers = nn.Sequential(
operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
nn.SiLU(),
nn.Dropout(p=dropout),
operations.conv_nd(
dims,
self.out_channels,
self.out_channels,
kernel_size,
padding=padding,
dtype=dtype,
device=device,
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
else:
self.skip_connection = operations.conv_nd(
dims, channels, self.out_channels, 1, dtype=dtype, device=device
)
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
"""#### Forward pass for the residual block layer.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `emb` (torch.Tensor): The embedding tensor.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
return sampling_util.checkpoint(
self._forward, (x, emb), self.parameters(), self.use_checkpoint
)
def _forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
"""#### Internal forward pass for the residual block layer.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `emb` (torch.Tensor): The embedding tensor.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
h = self.in_layers(x)
emb_out = None
if not self.skip_t_emb:
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if emb_out is not None:
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
ops = cast.disable_weight_init
class ResnetBlock(nn.Module):
"""#### Class representing a ResNet block layer."""
def __init__(
self,
*,
in_channels: int,
out_channels: Optional[int] = None,
conv_shortcut: bool = False,
dropout: float,
temb_channels: int = 512,
):
"""#### Initialize the ResNet block layer.
#### Args:
- `in_channels` (int): The number of input channels.
- `out_channels` (int, optional): The number of output channels. Defaults to None.
- `conv_shortcut` (bool, optional): Whether to use convolution shortcut. Defaults to False.
- `dropout` (float): The dropout rate.
- `temb_channels` (int, optional): The number of embedding channels. Defaults to 512.
"""
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.swish = torch.nn.SiLU(inplace=True)
self.norm1 = Attention.Normalize(in_channels)
self.conv1 = ops.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
self.norm2 = Attention.Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout, inplace=True)
self.conv2 = ops.Conv2d(
out_channels, out_channels, kernel_size=3, stride=1, padding=1
)
if self.in_channels != self.out_channels:
self.nin_shortcut = ops.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, x: torch.Tensor, temb: torch.Tensor) -> torch.Tensor:
"""#### Forward pass for the ResNet block layer.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `temb` (torch.Tensor): The embedding tensor.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
h = x
h = self.norm1(h)
h = self.swish(h)
h = self.conv1(h)
h = self.norm2(h)
h = self.swish(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
x = self.nin_shortcut(x)
return x + h
|