File size: 14,737 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
from abc import abstractmethod
from typing import Optional, Any, Dict

import torch
from modules.NeuralNetwork import transformer
import torch.nn as nn
import torch.nn.functional as F

from modules.Attention import Attention
from modules.cond import cast
from modules.sample import sampling_util


oai_ops = cast.disable_weight_init


class TimestepBlock1(nn.Module):
    """#### Abstract class representing a timestep block."""

    @abstractmethod
    def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
        """#### Forward pass for the timestep block.



        #### Args:

            - `x` (torch.Tensor): The input tensor.

            - `emb` (torch.Tensor): The embedding tensor.



        #### Returns:

            - `torch.Tensor`: The output tensor.

        """
        pass


def forward_timestep_embed1(

    ts: nn.ModuleList,

    x: torch.Tensor,

    emb: torch.Tensor,

    context: Optional[torch.Tensor] = None,

    transformer_options: Optional[Dict[str, Any]] = {},

    output_shape: Optional[torch.Size] = None,

    time_context: Optional[torch.Tensor] = None,

    num_video_frames: Optional[int] = None,

    image_only_indicator: Optional[bool] = None,

) -> torch.Tensor:
    """#### Forward pass for timestep embedding.



    #### Args:

        - `ts` (nn.ModuleList): The list of timestep blocks.

        - `x` (torch.Tensor): The input tensor.

        - `emb` (torch.Tensor): The embedding tensor.

        - `context` (torch.Tensor, optional): The context tensor. Defaults to None.

        - `transformer_options` (dict, optional): The transformer options. Defaults to {}.

        - `output_shape` (torch.Size, optional): The output shape. Defaults to None.

        - `time_context` (torch.Tensor, optional): The time context tensor. Defaults to None.

        - `num_video_frames` (int, optional): The number of video frames. Defaults to None.

        - `image_only_indicator` (bool, optional): The image only indicator. Defaults to None.



    #### Returns:

        - `torch.Tensor`: The output tensor.

    """
    for layer in ts:
        if isinstance(layer, TimestepBlock1):
            x = layer(x, emb)
        elif isinstance(layer, transformer.SpatialTransformer):
            x = layer(x, context, transformer_options)
            if "transformer_index" in transformer_options:
                transformer_options["transformer_index"] += 1
        elif isinstance(layer, Upsample1):
            x = layer(x, output_shape=output_shape)
        else:
            x = layer(x)
    return x


class Upsample1(nn.Module):
    """#### Class representing an upsample layer."""

    def __init__(

        self,

        channels: int,

        use_conv: bool,

        dims: int = 2,

        out_channels: Optional[int] = None,

        padding: int = 1,

        dtype: Optional[torch.dtype] = None,

        device: Optional[torch.device] = None,

        operations: Any = oai_ops,

    ):
        """#### Initialize the upsample layer.



        #### Args:

            - `channels` (int): The number of input channels.

            - `use_conv` (bool): Whether to use convolution.

            - `dims` (int, optional): The number of dimensions. Defaults to 2.

            - `out_channels` (int, optional): The number of output channels. Defaults to None.

            - `padding` (int, optional): The padding size. Defaults to 1.

            - `dtype` (torch.dtype, optional): The data type. Defaults to None.

            - `device` (torch.device, optional): The device. Defaults to None.

            - `operations` (any, optional): The operations. Defaults to oai_ops.

        """
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        if use_conv:
            self.conv = operations.conv_nd(
                dims,
                self.channels,
                self.out_channels,
                3,
                padding=padding,
                dtype=dtype,
                device=device,
            )

    def forward(

        self, x: torch.Tensor, output_shape: Optional[torch.Size] = None

    ) -> torch.Tensor:
        """#### Forward pass for the upsample layer.



        #### Args:

            - `x` (torch.Tensor): The input tensor.

            - `output_shape` (torch.Size, optional): The output shape. Defaults to None.



        #### Returns:

            - `torch.Tensor`: The output tensor.

        """
        assert x.shape[1] == self.channels
        shape = [x.shape[2] * 2, x.shape[3] * 2]
        if output_shape is not None:
            shape[0] = output_shape[2]
            shape[1] = output_shape[3]

        x = F.interpolate(x, size=shape, mode="nearest")
        if self.use_conv:
            x = self.conv(x)
        return x


class Downsample1(nn.Module):
    """#### Class representing a downsample layer."""

    def __init__(

        self,

        channels: int,

        use_conv: bool,

        dims: int = 2,

        out_channels: Optional[int] = None,

        padding: int = 1,

        dtype: Optional[torch.dtype] = None,

        device: Optional[torch.device] = None,

        operations: Any = oai_ops,

    ):
        """#### Initialize the downsample layer.



        #### Args:

            - `channels` (int): The number of input channels.

            - `use_conv` (bool): Whether to use convolution.

            - `dims` (int, optional): The number of dimensions. Defaults to 2.

            - `out_channels` (int, optional): The number of output channels. Defaults to None.

            - `padding` (int, optional): The padding size. Defaults to 1.

            - `dtype` (torch.dtype, optional): The data type. Defaults to None.

            - `device` (torch.device, optional): The device. Defaults to None.

            - `operations` (any, optional): The operations. Defaults to oai_ops.

        """
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        self.op = operations.conv_nd(
            dims,
            self.channels,
            self.out_channels,
            3,
            stride=stride,
            padding=padding,
            dtype=dtype,
            device=device,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """#### Forward pass for the downsample layer.



        #### Args:

            - `x` (torch.Tensor): The input tensor.



        #### Returns:

            - `torch.Tensor`: The output tensor.

        """
        assert x.shape[1] == self.channels
        return self.op(x)


class ResBlock1(TimestepBlock1):
    """#### Class representing a residual block layer."""

    def __init__(

        self,

        channels: int,

        emb_channels: int,

        dropout: float,

        out_channels: Optional[int] = None,

        use_conv: bool = False,

        use_scale_shift_norm: bool = False,

        dims: int = 2,

        use_checkpoint: bool = False,

        up: bool = False,

        down: bool = False,

        kernel_size: int = 3,

        exchange_temb_dims: bool = False,

        skip_t_emb: bool = False,

        dtype: Optional[torch.dtype] = None,

        device: Optional[torch.device] = None,

        operations: Any = oai_ops,

    ):
        """#### Initialize the residual block layer.



        #### Args:

            - `channels` (int): The number of input channels.

            - `emb_channels` (int): The number of embedding channels.

            - `dropout` (float): The dropout rate.

            - `out_channels` (int, optional): The number of output channels. Defaults to None.

            - `use_conv` (bool, optional): Whether to use convolution. Defaults to False.

            - `use_scale_shift_norm` (bool, optional): Whether to use scale shift normalization. Defaults to False.

            - `dims` (int, optional): The number of dimensions. Defaults to 2.

            - `use_checkpoint` (bool, optional): Whether to use checkpointing. Defaults to False.

            - `up` (bool, optional): Whether to use upsampling. Defaults to False.

            - `down` (bool, optional): Whether to use downsampling. Defaults to False.

            - `kernel_size` (int, optional): The kernel size. Defaults to 3.

            - `exchange_temb_dims` (bool, optional): Whether to exchange embedding dimensions. Defaults to False.

            - `skip_t_emb` (bool, optional): Whether to skip embedding. Defaults to False.

            - `dtype` (torch.dtype, optional): The data type. Defaults to None.

            - `device` (torch.device, optional): The device. Defaults to None.

            - `operations` (any, optional): The operations. Defaults to oai_ops.

        """
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm
        self.exchange_temb_dims = exchange_temb_dims

        padding = kernel_size // 2

        self.in_layers = nn.Sequential(
            operations.GroupNorm(32, channels, dtype=dtype, device=device),
            nn.SiLU(),
            operations.conv_nd(
                dims,
                channels,
                self.out_channels,
                kernel_size,
                padding=padding,
                dtype=dtype,
                device=device,
            ),
        )

        self.updown = up or down

        self.h_upd = self.x_upd = nn.Identity()

        self.skip_t_emb = skip_t_emb
        self.emb_layers = nn.Sequential(
            nn.SiLU(),
            operations.Linear(
                emb_channels,
                (2 * self.out_channels if use_scale_shift_norm else self.out_channels),
                dtype=dtype,
                device=device,
            ),
        )
        self.out_layers = nn.Sequential(
            operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
            nn.SiLU(),
            nn.Dropout(p=dropout),
            operations.conv_nd(
                dims,
                self.out_channels,
                self.out_channels,
                kernel_size,
                padding=padding,
                dtype=dtype,
                device=device,
            ),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        else:
            self.skip_connection = operations.conv_nd(
                dims, channels, self.out_channels, 1, dtype=dtype, device=device
            )

    def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
        """#### Forward pass for the residual block layer.



        #### Args:

            - `x` (torch.Tensor): The input tensor.

            - `emb` (torch.Tensor): The embedding tensor.



        #### Returns:

            - `torch.Tensor`: The output tensor.

        """
        return sampling_util.checkpoint(
            self._forward, (x, emb), self.parameters(), self.use_checkpoint
        )

    def _forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
        """#### Internal forward pass for the residual block layer.



        #### Args:

            - `x` (torch.Tensor): The input tensor.

            - `emb` (torch.Tensor): The embedding tensor.



        #### Returns:

            - `torch.Tensor`: The output tensor.

        """
        h = self.in_layers(x)

        emb_out = None
        if not self.skip_t_emb:
            emb_out = self.emb_layers(emb).type(h.dtype)
            while len(emb_out.shape) < len(h.shape):
                emb_out = emb_out[..., None]
        if emb_out is not None:
            h = h + emb_out
        h = self.out_layers(h)
        return self.skip_connection(x) + h


ops = cast.disable_weight_init


class ResnetBlock(nn.Module):
    """#### Class representing a ResNet block layer."""

    def __init__(

        self,

        *,

        in_channels: int,

        out_channels: Optional[int] = None,

        conv_shortcut: bool = False,

        dropout: float,

        temb_channels: int = 512,

    ):
        """#### Initialize the ResNet block layer.



        #### Args:

            - `in_channels` (int): The number of input channels.

            - `out_channels` (int, optional): The number of output channels. Defaults to None.

            - `conv_shortcut` (bool, optional): Whether to use convolution shortcut. Defaults to False.

            - `dropout` (float): The dropout rate.

            - `temb_channels` (int, optional): The number of embedding channels. Defaults to 512.

        """
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

        self.swish = torch.nn.SiLU(inplace=True)
        self.norm1 = Attention.Normalize(in_channels)
        self.conv1 = ops.Conv2d(
            in_channels, out_channels, kernel_size=3, stride=1, padding=1
        )
        self.norm2 = Attention.Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout, inplace=True)
        self.conv2 = ops.Conv2d(
            out_channels, out_channels, kernel_size=3, stride=1, padding=1
        )
        if self.in_channels != self.out_channels:
            self.nin_shortcut = ops.Conv2d(
                in_channels, out_channels, kernel_size=1, stride=1, padding=0
            )

    def forward(self, x: torch.Tensor, temb: torch.Tensor) -> torch.Tensor:
        """#### Forward pass for the ResNet block layer.



        #### Args:

            - `x` (torch.Tensor): The input tensor.

            - `temb` (torch.Tensor): The embedding tensor.



        #### Returns:

            - `torch.Tensor`: The output tensor.

        """
        h = x
        h = self.norm1(h)
        h = self.swish(h)
        h = self.conv1(h)

        h = self.norm2(h)
        h = self.swish(h)
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            x = self.nin_shortcut(x)

        return x + h