File size: 6,967 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch
from ultralytics import YOLO
from modules.AutoDetailer import SEGS, AD_util, tensor_util
from typing import List, Tuple, Optional


class UltraBBoxDetector:
    """#### Class to detect bounding boxes using a YOLO model."""

    bbox_model: Optional[YOLO] = None

    def __init__(self, bbox_model: YOLO):
        """#### Initialize the UltraBBoxDetector with a YOLO model.



        #### Args:

            - `bbox_model` (YOLO): The YOLO model to use for detection.

        """
        self.bbox_model = bbox_model

    def detect(

        self,

        image: torch.Tensor,

        threshold: float,

        dilation: int,

        crop_factor: float,

        drop_size: int = 1,

        detailer_hook: Optional[callable] = None,

    ) -> Tuple[Tuple[int, int], List[SEGS.SEG]]:
        """#### Detect bounding boxes in an image.



        #### Args:

            - `image` (torch.Tensor): The input image tensor.

            - `threshold` (float): The detection threshold.

            - `dilation` (int): The dilation factor for masks.

            - `crop_factor` (float): The crop factor for bounding boxes.

            - `drop_size` (int, optional): The minimum size of bounding boxes to keep. Defaults to 1.

            - `detailer_hook` (callable, optional): A hook function for additional processing. Defaults to None.



        #### Returns:

            - `Tuple[Tuple[int, int], List[SEGS.SEG]]`: The shape of the image and a list of detected segments.

        """
        drop_size = max(drop_size, 1)
        detected_results = AD_util.inference_bbox(
            self.bbox_model, tensor_util.tensor2pil(image), threshold
        )
        segmasks = AD_util.create_segmasks(detected_results)

        if dilation > 0:
            segmasks = AD_util.dilate_masks(segmasks, dilation)

        items = []
        h = image.shape[1]
        w = image.shape[2]

        for x, label in zip(segmasks, detected_results[0]):
            item_bbox = x[0]
            item_mask = x[1]

            y1, x1, y2, x2 = item_bbox

            if (
                x2 - x1 > drop_size and y2 - y1 > drop_size
            ):  # minimum dimension must be (2,2) to avoid squeeze issue
                crop_region = AD_util.make_crop_region(w, h, item_bbox, crop_factor)

                cropped_image = AD_util.crop_image(image, crop_region)
                cropped_mask = AD_util.crop_ndarray2(item_mask, crop_region)
                confidence = x[2]

                item = SEGS.SEG(
                    cropped_image,
                    cropped_mask,
                    confidence,
                    crop_region,
                    item_bbox,
                    label,
                    None,
                )

                items.append(item)

        shape = image.shape[1], image.shape[2]
        segs = shape, items

        return segs


class UltraSegmDetector:
    """#### Class to detect segments using a YOLO model."""

    bbox_model: Optional[YOLO] = None

    def __init__(self, bbox_model: YOLO):
        """#### Initialize the UltraSegmDetector with a YOLO model.



        #### Args:

            - `bbox_model` (YOLO): The YOLO model to use for detection.

        """
        self.bbox_model = bbox_model


class NO_SEGM_DETECTOR:
    """#### Placeholder class for no segment detector."""

    pass


class UltralyticsDetectorProvider:
    """#### Class to provide YOLO models for detection."""

    def doit(self, model_name: str) -> Tuple[UltraBBoxDetector, UltraSegmDetector]:
        """#### Load a YOLO model and return detectors.



        #### Args:

            - `model_name` (str): The name of the YOLO model to load.



        #### Returns:

            - `Tuple[UltraBBoxDetector, UltraSegmDetector]`: The bounding box and segment detectors.

        """
        model = AD_util.load_yolo("./_internal/yolos/" + model_name)
        return UltraBBoxDetector(model), UltraSegmDetector(model)


class BboxDetectorForEach:
    """#### Class to detect bounding boxes for each segment."""

    def doit(

        self,

        bbox_detector: UltraBBoxDetector,

        image: torch.Tensor,

        threshold: float,

        dilation: int,

        crop_factor: float,

        drop_size: int,

        labels: Optional[str] = None,

        detailer_hook: Optional[callable] = None,

    ) -> Tuple[Tuple[int, int], List[SEGS.SEG]]:
        """#### Detect bounding boxes for each segment in an image.



        #### Args:

            - `bbox_detector` (UltraBBoxDetector): The bounding box detector.

            - `image` (torch.Tensor): The input image tensor.

            - `threshold` (float): The detection threshold.

            - `dilation` (int): The dilation factor for masks.

            - `crop_factor` (float): The crop factor for bounding boxes.

            - `drop_size` (int): The minimum size of bounding boxes to keep.

            - `labels` (str, optional): The labels to filter. Defaults to None.

            - `detailer_hook` (callable, optional): A hook function for additional processing. Defaults to None.



        #### Returns:

            - `Tuple[Tuple[int, int], List[SEGS.SEG]]`: The shape of the image and a list of detected segments.

        """
        segs = bbox_detector.detect(
            image, threshold, dilation, crop_factor, drop_size, detailer_hook
        )

        if labels is not None and labels != "":
            labels = labels.split(",")
            if len(labels) > 0:
                segs, _ = SEGS.SEGSLabelFilter.filter(segs, labels)

        return segs


class WildcardChooser:
    """#### Class to choose wildcards for segments."""

    def __init__(self, items: List[Tuple[None, str]], randomize_when_exhaust: bool):
        """#### Initialize the WildcardChooser.



        #### Args:

            - `items` (List[Tuple[None, str]]): The list of items to choose from.

            - `randomize_when_exhaust` (bool): Whether to randomize when the list is exhausted.

        """
        self.i = 0
        self.items = items
        self.randomize_when_exhaust = randomize_when_exhaust

    def get(self, seg: SEGS.SEG) -> Tuple[None, str]:
        """#### Get the next item from the list.



        #### Args:

            - `seg` (SEGS.SEG): The segment.



        #### Returns:

            - `Tuple[None, str]`: The next item from the list.

        """
        item = self.items[self.i]
        self.i += 1

        return item


def process_wildcard_for_segs(wildcard: str) -> Tuple[None, WildcardChooser]:
    """#### Process a wildcard for segments.



    #### Args:

        - `wildcard` (str): The wildcard.



    #### Returns:

        - `Tuple[None, WildcardChooser]`: The processed wildcard and a WildcardChooser.

    """
    return None, WildcardChooser([(None, wildcard)], False)