File size: 6,377 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
import torch.nn as nn
import logging

from modules.Utilities import util
from modules.Attention import AttentionMethods
from modules.Device import Device
from modules.cond import cast


def Normalize(

    in_channels: int, dtype: torch.dtype = None, device: torch.device = None

) -> torch.nn.GroupNorm:
    """#### Normalize the input channels.



    #### Args:

        - `in_channels` (int): The input channels.

        - `dtype` (torch.dtype, optional): The data type. Defaults to `None`.

        - `device` (torch.device, optional): The device. Defaults to `None`.



    #### Returns:

        - `torch.nn.GroupNorm`: The normalized input channels

    """
    return torch.nn.GroupNorm(
        num_groups=32,
        num_channels=in_channels,
        eps=1e-6,
        affine=True,
        dtype=dtype,
        device=device,
    )


if Device.xformers_enabled():
    logging.info("Using xformers cross attention")
    optimized_attention = AttentionMethods.attention_xformers
else:
    logging.info("Using pytorch cross attention")
    optimized_attention = AttentionMethods.attention_pytorch

optimized_attention_masked = optimized_attention


def optimized_attention_for_device() -> AttentionMethods.attention_pytorch:
    """#### Get the optimized attention for a device.



    #### Returns:

        - `function`: The optimized attention function.

    """
    return AttentionMethods.attention_pytorch


class CrossAttention(nn.Module):
    """#### Cross attention module, which applies attention across the query and context.



    #### Args:

        - `query_dim` (int): The query dimension.

        - `context_dim` (int, optional): The context dimension. Defaults to `None`.

        - `heads` (int, optional): The number of heads. Defaults to `8`.

        - `dim_head` (int, optional): The head dimension. Defaults to `64`.

        - `dropout` (float, optional): The dropout rate. Defaults to `0.0`.

        - `dtype` (torch.dtype, optional): The data type. Defaults to `None`.

        - `device` (torch.device, optional): The device. Defaults to `None`.

        - `operations` (cast.disable_weight_init, optional): The operations. Defaults to `cast.disable_weight_init`.

    """

    def __init__(

        self,

        query_dim: int,

        context_dim: int = None,

        heads: int = 8,

        dim_head: int = 64,

        dropout: float = 0.0,

        dtype: torch.dtype = None,

        device: torch.device = None,

        operations: cast.disable_weight_init = cast.disable_weight_init,

    ):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = util.default(context_dim, query_dim)

        self.heads = heads
        self.dim_head = dim_head

        self.to_q = operations.Linear(
            query_dim, inner_dim, bias=False, dtype=dtype, device=device
        )
        self.to_k = operations.Linear(
            context_dim, inner_dim, bias=False, dtype=dtype, device=device
        )
        self.to_v = operations.Linear(
            context_dim, inner_dim, bias=False, dtype=dtype, device=device
        )

        self.to_out = nn.Sequential(
            operations.Linear(inner_dim, query_dim, dtype=dtype, device=device),
            nn.Dropout(dropout),
        )

    def forward(

        self,

        x: torch.Tensor,

        context: torch.Tensor = None,

        value: torch.Tensor = None,

        mask: torch.Tensor = None,

    ) -> torch.Tensor:
        """#### Forward pass of the cross attention module.



        #### Args:

            - `x` (torch.Tensor): The input tensor.

            - `context` (torch.Tensor, optional): The context tensor. Defaults to `None`.

            - `value` (torch.Tensor, optional): The value tensor. Defaults to `None`.

            - `mask` (torch.Tensor, optional): The mask tensor. Defaults to `None`.



        #### Returns:

            - `torch.Tensor`: The output tensor.

        """
        q = self.to_q(x)
        context = util.default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)

        out = optimized_attention(q, k, v, self.heads)
        return self.to_out(out)


class AttnBlock(nn.Module):
    """#### Attention block, which applies attention to the input tensor.



    #### Args:

        - `in_channels` (int): The input channels.

    """

    def __init__(self, in_channels: int):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = cast.disable_weight_init.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.k = cast.disable_weight_init.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.v = cast.disable_weight_init.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.proj_out = cast.disable_weight_init.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )

        if Device.xformers_enabled_vae():
            logging.info("Using xformers attention in VAE")
            self.optimized_attention = AttentionMethods.xformers_attention
        else:
            logging.info("Using pytorch attention in VAE")
            self.optimized_attention = AttentionMethods.pytorch_attention

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """#### Forward pass of the attention block.



        #### Args:

            - `x` (torch.Tensor): The input tensor.



        #### Returns:

            - `torch.Tensor`: The output tensor.

        """
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        h_ = self.optimized_attention(q, k, v)

        h_ = self.proj_out(h_)

        return x + h_


def make_attn(in_channels: int, attn_type: str = "vanilla") -> AttnBlock:
    """#### Make an attention block.



    #### Args:

        - `in_channels` (int): The input channels.

        - `attn_type` (str, optional): The attention type. Defaults to "vanilla".



    #### Returns:

        - `AttnBlock`: A class instance of the attention block.

    """
    return AttnBlock(in_channels)