File size: 15,279 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d117d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import json
import logging
import numbers
import torch
from modules.Device import Device
from modules.cond import cast
from modules.clip.CLIPTextModel import CLIPTextModel



def gen_empty_tokens(special_tokens: dict, length: int) -> list:
    """#### Generate a list of empty tokens.



    #### Args:

        - `special_tokens` (dict): The special tokens.

        - `length` (int): The length of the token list.



    #### Returns:

        - `list`: The list of empty tokens.

    """
    start_token = special_tokens.get("start", None)
    end_token = special_tokens.get("end", None)
    pad_token = special_tokens.get("pad")
    output = []
    if start_token is not None:
        output.append(start_token)
    if end_token is not None:
        output.append(end_token)
    output += [pad_token] * (length - len(output))
    return output


class ClipTokenWeightEncoder:
    """#### Class representing a CLIP token weight encoder."""

    def encode_token_weights(self, token_weight_pairs: list) -> tuple:
        """#### Encode token weights.



        #### Args:

            - `token_weight_pairs` (list): The token weight pairs.



        #### Returns:

            - `tuple`: The encoded tokens and the pooled output.

        """
        to_encode = list()
        max_token_len = 0
        has_weights = False
        for x in token_weight_pairs:
            tokens = list(map(lambda a: a[0], x))
            max_token_len = max(len(tokens), max_token_len)
            has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
            to_encode.append(tokens)

        sections = len(to_encode)
        if has_weights or sections == 0:
            to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))

        o = self.encode(to_encode)
        out, pooled = o[:2]

        if pooled is not None:
            first_pooled = pooled[0:1].to(Device.intermediate_device())
        else:
            first_pooled = pooled

        output = []
        for k in range(0, sections):
            z = out[k : k + 1]
            if has_weights:
                z_empty = out[-1]
                for i in range(len(z)):
                    for j in range(len(z[i])):
                        weight = token_weight_pairs[k][j][1]
                        if weight != 1.0:
                            z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
            output.append(z)

        if len(output) == 0:
            r = (out[-1:].to(Device.intermediate_device()), first_pooled)
        else:
            r = (torch.cat(output, dim=-2).to(Device.intermediate_device()), first_pooled)

        if len(o) > 2:
            extra = {}
            for k in o[2]:
                v = o[2][k]
                if k == "attention_mask":
                    v = (
                        v[:sections]
                        .flatten()
                        .unsqueeze(dim=0)
                        .to(Device.intermediate_device())
                    )
                extra[k] = v

            r = r + (extra,)
        return r

class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
    """#### Uses the CLIP transformer encoder for text (from huggingface)."""

    LAYERS = ["last", "pooled", "hidden"]

    def __init__(

        self,

        version: str = "openai/clip-vit-large-patch14",

        device: str = "cpu",

        max_length: int = 77,

        freeze: bool = True,

        layer: str = "last",

        layer_idx: int = None,

        textmodel_json_config: str = None,

        dtype: torch.dtype = None,

        model_class: type = CLIPTextModel,

        special_tokens: dict = {"start": 49406, "end": 49407, "pad": 49407},

        layer_norm_hidden_state: bool = True,

        enable_attention_masks: bool = False,

        zero_out_masked:bool = False,

        return_projected_pooled: bool = True,

        return_attention_masks: bool = False,

        model_options={},

    ):
        """#### Initialize the SDClipModel.



        #### Args:

            - `version` (str, optional): The version of the model. Defaults to "openai/clip-vit-large-patch14".

            - `device` (str, optional): The device to use. Defaults to "cpu".

            - `max_length` (int, optional): The maximum length of the input. Defaults to 77.

            - `freeze` (bool, optional): Whether to freeze the model parameters. Defaults to True.

            - `layer` (str, optional): The layer to use. Defaults to "last".

            - `layer_idx` (int, optional): The index of the layer. Defaults to None.

            - `textmodel_json_config` (str, optional): The path to the JSON config file. Defaults to None.

            - `dtype` (torch.dtype, optional): The data type. Defaults to None.

            - `model_class` (type, optional): The model class. Defaults to CLIPTextModel.

            - `special_tokens` (dict, optional): The special tokens. Defaults to {"start": 49406, "end": 49407, "pad": 49407}.

            - `layer_norm_hidden_state` (bool, optional): Whether to normalize the hidden state. Defaults to True.

            - `enable_attention_masks` (bool, optional): Whether to enable attention masks. Defaults to False.

            - `zero_out_masked` (bool, optional): Whether to zero out masked tokens. Defaults to False.

            - `return_projected_pooled` (bool, optional): Whether to return the projected pooled output. Defaults to True.

            - `return_attention_masks` (bool, optional): Whether to return the attention masks. Defaults to False.

            - `model_options` (dict, optional): Additional model options. Defaults to {}.

        """
        super().__init__()
        assert layer in self.LAYERS

        if textmodel_json_config is None:
            textmodel_json_config = "./_internal/clip/sd1_clip_config.json"

        with open(textmodel_json_config) as f:
            config = json.load(f)

        operations = model_options.get("custom_operations", None)
        if operations is None:
            operations = cast.manual_cast

        self.operations = operations
        self.transformer = model_class(config, dtype, device, self.operations)
        self.num_layers = self.transformer.num_layers

        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = None
        self.special_tokens = special_tokens

        self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
        self.enable_attention_masks = enable_attention_masks
        self.zero_out_masked = zero_out_masked

        self.layer_norm_hidden_state = layer_norm_hidden_state
        self.return_projected_pooled = return_projected_pooled
        self.return_attention_masks = return_attention_masks

        if layer == "hidden":
            assert layer_idx is not None
            assert abs(layer_idx) < self.num_layers
            self.set_clip_options({"layer": layer_idx})
        self.options_default = (
            self.layer,
            self.layer_idx,
            self.return_projected_pooled,
        )

    def freeze(self) -> None:
        """#### Freeze the model parameters."""
        self.transformer = self.transformer.eval()
        for param in self.parameters():
            param.requires_grad = False

    def set_clip_options(self, options: dict) -> None:
        """#### Set the CLIP options.



        #### Args:

            - `options` (dict): The options to set.

        """
        layer_idx = options.get("layer", self.layer_idx)
        self.return_projected_pooled = options.get(
            "projected_pooled", self.return_projected_pooled
        )
        if layer_idx is None or abs(layer_idx) > self.num_layers:
            self.layer = "last"
        else:
            self.layer = "hidden"
            self.layer_idx = layer_idx

    def reset_clip_options(self) -> None:
        """#### Reset the CLIP options to default."""
        self.layer = self.options_default[0]
        self.layer_idx = self.options_default[1]
        self.return_projected_pooled = self.options_default[2]

    def set_up_textual_embeddings(self, tokens: list, current_embeds: torch.nn.Embedding) -> list:
        """#### Set up the textual embeddings.



        #### Args:

            - `tokens` (list): The input tokens.

            - `current_embeds` (torch.nn.Embedding): The current embeddings.



        #### Returns:

            - `list`: The processed tokens.

        """
        out_tokens = []
        next_new_token = token_dict_size = current_embeds.weight.shape[0]
        embedding_weights = []

        for x in tokens:
            tokens_temp = []
            for y in x:
                if isinstance(y, numbers.Integral):
                    tokens_temp += [int(y)]
                else:
                    if y.shape[0] == current_embeds.weight.shape[1]:
                        embedding_weights += [y]
                        tokens_temp += [next_new_token]
                        next_new_token += 1
                    else:
                        logging.warning(
                            "WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(
                                y.shape[0], current_embeds.weight.shape[1]
                            )
                        )
            while len(tokens_temp) < len(x):
                tokens_temp += [self.special_tokens["pad"]]
            out_tokens += [tokens_temp]

        n = token_dict_size
        if len(embedding_weights) > 0:
            new_embedding = self.operations.Embedding(
                next_new_token + 1,
                current_embeds.weight.shape[1],
                device=current_embeds.weight.device,
                dtype=current_embeds.weight.dtype,
            )
            new_embedding.weight[:token_dict_size] = current_embeds.weight
            for x in embedding_weights:
                new_embedding.weight[n] = x
                n += 1
            self.transformer.set_input_embeddings(new_embedding)

        processed_tokens = []
        for x in out_tokens:
            processed_tokens += [
                list(map(lambda a: n if a == -1 else a, x))
            ]  # The EOS token should always be the largest one

        return processed_tokens

    def forward(self, tokens: list) -> tuple:
        """#### Forward pass of the model.



        #### Args:

            - `tokens` (list): The input tokens.



        #### Returns:

            - `tuple`: The output and the pooled output.

        """
        backup_embeds = self.transformer.get_input_embeddings()
        device = backup_embeds.weight.device
        tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
        tokens = torch.LongTensor(tokens).to(device)

        attention_mask = None
        if (
            self.enable_attention_masks
            or self.zero_out_masked
            or self.return_attention_masks
        ):
            attention_mask = torch.zeros_like(tokens)
            end_token = self.special_tokens.get("end", -1)
            for x in range(attention_mask.shape[0]):
                for y in range(attention_mask.shape[1]):
                    attention_mask[x, y] = 1
                    if tokens[x, y] == end_token:
                        break

        attention_mask_model = None
        if self.enable_attention_masks:
            attention_mask_model = attention_mask

        outputs = self.transformer(
            tokens,
            attention_mask_model,
            intermediate_output=self.layer_idx,
            final_layer_norm_intermediate=self.layer_norm_hidden_state,
            dtype=torch.float32,
        )
        self.transformer.set_input_embeddings(backup_embeds)

        if self.layer == "last":
            z = outputs[0].float()
        else:
            z = outputs[1].float()

        if self.zero_out_masked:
            z *= attention_mask.unsqueeze(-1).float()

        pooled_output = None
        if len(outputs) >= 3:
            if (
                not self.return_projected_pooled
                and len(outputs) >= 4
                and outputs[3] is not None
            ):
                pooled_output = outputs[3].float()
            elif outputs[2] is not None:
                pooled_output = outputs[2].float()

        extra = {}
        if self.return_attention_masks:
            extra["attention_mask"] = attention_mask

        if len(extra) > 0:
            return z, pooled_output, extra

        return z, pooled_output

    def encode(self, tokens: list) -> tuple:
        """#### Encode the input tokens.



        #### Args:

            - `tokens` (list): The input tokens.



        #### Returns:

            - `tuple`: The encoded tokens and the pooled output.

        """
        return self(tokens)

    def load_sd(self, sd: dict) -> None:
        """#### Load the state dictionary.



        #### Args:

            - `sd` (dict): The state dictionary.

        """
        return self.transformer.load_state_dict(sd, strict=False)


class SD1ClipModel(torch.nn.Module):
    """#### Class representing the SD1ClipModel."""

    def __init__(

        self, device: str = "cpu", dtype: torch.dtype = None, clip_name: str = "l", clip_model: type = SDClipModel, **kwargs

    ):
        """#### Initialize the SD1ClipModel.



        #### Args:

            - `device` (str, optional): The device to use. Defaults to "cpu".

            - `dtype` (torch.dtype, optional): The data type. Defaults to None.

            - `clip_name` (str, optional): The name of the CLIP model. Defaults to "l".

            - `clip_model` (type, optional): The CLIP model class. Defaults to SDClipModel.

            - `**kwargs`: Additional keyword arguments.

        """
        super().__init__()
        self.clip_name = clip_name
        self.clip = "clip_{}".format(self.clip_name)
        self.lowvram_patch_counter = 0
        self.model_loaded_weight_memory = 0
        setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs))

    def set_clip_options(self, options: dict) -> None:
        """#### Set the CLIP options.



        #### Args:

            - `options` (dict): The options to set.

        """
        getattr(self, self.clip).set_clip_options(options)

    def reset_clip_options(self) -> None:
        """#### Reset the CLIP options to default."""
        getattr(self, self.clip).reset_clip_options()

    def encode_token_weights(self, token_weight_pairs: dict) -> tuple:
        """#### Encode token weights.



        #### Args:

            - `token_weight_pairs` (dict): The token weight pairs.



        #### Returns:

            - `tuple`: The encoded tokens and the pooled output.

        """
        token_weight_pairs = token_weight_pairs[self.clip_name]
        out, pooled = getattr(self, self.clip).encode_token_weights(token_weight_pairs)
        return out, pooled