Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,279 Bytes
d9a2e19 1d117d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import json
import logging
import numbers
import torch
from modules.Device import Device
from modules.cond import cast
from modules.clip.CLIPTextModel import CLIPTextModel
def gen_empty_tokens(special_tokens: dict, length: int) -> list:
"""#### Generate a list of empty tokens.
#### Args:
- `special_tokens` (dict): The special tokens.
- `length` (int): The length of the token list.
#### Returns:
- `list`: The list of empty tokens.
"""
start_token = special_tokens.get("start", None)
end_token = special_tokens.get("end", None)
pad_token = special_tokens.get("pad")
output = []
if start_token is not None:
output.append(start_token)
if end_token is not None:
output.append(end_token)
output += [pad_token] * (length - len(output))
return output
class ClipTokenWeightEncoder:
"""#### Class representing a CLIP token weight encoder."""
def encode_token_weights(self, token_weight_pairs: list) -> tuple:
"""#### Encode token weights.
#### Args:
- `token_weight_pairs` (list): The token weight pairs.
#### Returns:
- `tuple`: The encoded tokens and the pooled output.
"""
to_encode = list()
max_token_len = 0
has_weights = False
for x in token_weight_pairs:
tokens = list(map(lambda a: a[0], x))
max_token_len = max(len(tokens), max_token_len)
has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
to_encode.append(tokens)
sections = len(to_encode)
if has_weights or sections == 0:
to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))
o = self.encode(to_encode)
out, pooled = o[:2]
if pooled is not None:
first_pooled = pooled[0:1].to(Device.intermediate_device())
else:
first_pooled = pooled
output = []
for k in range(0, sections):
z = out[k : k + 1]
if has_weights:
z_empty = out[-1]
for i in range(len(z)):
for j in range(len(z[i])):
weight = token_weight_pairs[k][j][1]
if weight != 1.0:
z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
output.append(z)
if len(output) == 0:
r = (out[-1:].to(Device.intermediate_device()), first_pooled)
else:
r = (torch.cat(output, dim=-2).to(Device.intermediate_device()), first_pooled)
if len(o) > 2:
extra = {}
for k in o[2]:
v = o[2][k]
if k == "attention_mask":
v = (
v[:sections]
.flatten()
.unsqueeze(dim=0)
.to(Device.intermediate_device())
)
extra[k] = v
r = r + (extra,)
return r
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
"""#### Uses the CLIP transformer encoder for text (from huggingface)."""
LAYERS = ["last", "pooled", "hidden"]
def __init__(
self,
version: str = "openai/clip-vit-large-patch14",
device: str = "cpu",
max_length: int = 77,
freeze: bool = True,
layer: str = "last",
layer_idx: int = None,
textmodel_json_config: str = None,
dtype: torch.dtype = None,
model_class: type = CLIPTextModel,
special_tokens: dict = {"start": 49406, "end": 49407, "pad": 49407},
layer_norm_hidden_state: bool = True,
enable_attention_masks: bool = False,
zero_out_masked:bool = False,
return_projected_pooled: bool = True,
return_attention_masks: bool = False,
model_options={},
):
"""#### Initialize the SDClipModel.
#### Args:
- `version` (str, optional): The version of the model. Defaults to "openai/clip-vit-large-patch14".
- `device` (str, optional): The device to use. Defaults to "cpu".
- `max_length` (int, optional): The maximum length of the input. Defaults to 77.
- `freeze` (bool, optional): Whether to freeze the model parameters. Defaults to True.
- `layer` (str, optional): The layer to use. Defaults to "last".
- `layer_idx` (int, optional): The index of the layer. Defaults to None.
- `textmodel_json_config` (str, optional): The path to the JSON config file. Defaults to None.
- `dtype` (torch.dtype, optional): The data type. Defaults to None.
- `model_class` (type, optional): The model class. Defaults to CLIPTextModel.
- `special_tokens` (dict, optional): The special tokens. Defaults to {"start": 49406, "end": 49407, "pad": 49407}.
- `layer_norm_hidden_state` (bool, optional): Whether to normalize the hidden state. Defaults to True.
- `enable_attention_masks` (bool, optional): Whether to enable attention masks. Defaults to False.
- `zero_out_masked` (bool, optional): Whether to zero out masked tokens. Defaults to False.
- `return_projected_pooled` (bool, optional): Whether to return the projected pooled output. Defaults to True.
- `return_attention_masks` (bool, optional): Whether to return the attention masks. Defaults to False.
- `model_options` (dict, optional): Additional model options. Defaults to {}.
"""
super().__init__()
assert layer in self.LAYERS
if textmodel_json_config is None:
textmodel_json_config = "./_internal/clip/sd1_clip_config.json"
with open(textmodel_json_config) as f:
config = json.load(f)
operations = model_options.get("custom_operations", None)
if operations is None:
operations = cast.manual_cast
self.operations = operations
self.transformer = model_class(config, dtype, device, self.operations)
self.num_layers = self.transformer.num_layers
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
self.layer_idx = None
self.special_tokens = special_tokens
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
self.enable_attention_masks = enable_attention_masks
self.zero_out_masked = zero_out_masked
self.layer_norm_hidden_state = layer_norm_hidden_state
self.return_projected_pooled = return_projected_pooled
self.return_attention_masks = return_attention_masks
if layer == "hidden":
assert layer_idx is not None
assert abs(layer_idx) < self.num_layers
self.set_clip_options({"layer": layer_idx})
self.options_default = (
self.layer,
self.layer_idx,
self.return_projected_pooled,
)
def freeze(self) -> None:
"""#### Freeze the model parameters."""
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
def set_clip_options(self, options: dict) -> None:
"""#### Set the CLIP options.
#### Args:
- `options` (dict): The options to set.
"""
layer_idx = options.get("layer", self.layer_idx)
self.return_projected_pooled = options.get(
"projected_pooled", self.return_projected_pooled
)
if layer_idx is None or abs(layer_idx) > self.num_layers:
self.layer = "last"
else:
self.layer = "hidden"
self.layer_idx = layer_idx
def reset_clip_options(self) -> None:
"""#### Reset the CLIP options to default."""
self.layer = self.options_default[0]
self.layer_idx = self.options_default[1]
self.return_projected_pooled = self.options_default[2]
def set_up_textual_embeddings(self, tokens: list, current_embeds: torch.nn.Embedding) -> list:
"""#### Set up the textual embeddings.
#### Args:
- `tokens` (list): The input tokens.
- `current_embeds` (torch.nn.Embedding): The current embeddings.
#### Returns:
- `list`: The processed tokens.
"""
out_tokens = []
next_new_token = token_dict_size = current_embeds.weight.shape[0]
embedding_weights = []
for x in tokens:
tokens_temp = []
for y in x:
if isinstance(y, numbers.Integral):
tokens_temp += [int(y)]
else:
if y.shape[0] == current_embeds.weight.shape[1]:
embedding_weights += [y]
tokens_temp += [next_new_token]
next_new_token += 1
else:
logging.warning(
"WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(
y.shape[0], current_embeds.weight.shape[1]
)
)
while len(tokens_temp) < len(x):
tokens_temp += [self.special_tokens["pad"]]
out_tokens += [tokens_temp]
n = token_dict_size
if len(embedding_weights) > 0:
new_embedding = self.operations.Embedding(
next_new_token + 1,
current_embeds.weight.shape[1],
device=current_embeds.weight.device,
dtype=current_embeds.weight.dtype,
)
new_embedding.weight[:token_dict_size] = current_embeds.weight
for x in embedding_weights:
new_embedding.weight[n] = x
n += 1
self.transformer.set_input_embeddings(new_embedding)
processed_tokens = []
for x in out_tokens:
processed_tokens += [
list(map(lambda a: n if a == -1 else a, x))
] # The EOS token should always be the largest one
return processed_tokens
def forward(self, tokens: list) -> tuple:
"""#### Forward pass of the model.
#### Args:
- `tokens` (list): The input tokens.
#### Returns:
- `tuple`: The output and the pooled output.
"""
backup_embeds = self.transformer.get_input_embeddings()
device = backup_embeds.weight.device
tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
tokens = torch.LongTensor(tokens).to(device)
attention_mask = None
if (
self.enable_attention_masks
or self.zero_out_masked
or self.return_attention_masks
):
attention_mask = torch.zeros_like(tokens)
end_token = self.special_tokens.get("end", -1)
for x in range(attention_mask.shape[0]):
for y in range(attention_mask.shape[1]):
attention_mask[x, y] = 1
if tokens[x, y] == end_token:
break
attention_mask_model = None
if self.enable_attention_masks:
attention_mask_model = attention_mask
outputs = self.transformer(
tokens,
attention_mask_model,
intermediate_output=self.layer_idx,
final_layer_norm_intermediate=self.layer_norm_hidden_state,
dtype=torch.float32,
)
self.transformer.set_input_embeddings(backup_embeds)
if self.layer == "last":
z = outputs[0].float()
else:
z = outputs[1].float()
if self.zero_out_masked:
z *= attention_mask.unsqueeze(-1).float()
pooled_output = None
if len(outputs) >= 3:
if (
not self.return_projected_pooled
and len(outputs) >= 4
and outputs[3] is not None
):
pooled_output = outputs[3].float()
elif outputs[2] is not None:
pooled_output = outputs[2].float()
extra = {}
if self.return_attention_masks:
extra["attention_mask"] = attention_mask
if len(extra) > 0:
return z, pooled_output, extra
return z, pooled_output
def encode(self, tokens: list) -> tuple:
"""#### Encode the input tokens.
#### Args:
- `tokens` (list): The input tokens.
#### Returns:
- `tuple`: The encoded tokens and the pooled output.
"""
return self(tokens)
def load_sd(self, sd: dict) -> None:
"""#### Load the state dictionary.
#### Args:
- `sd` (dict): The state dictionary.
"""
return self.transformer.load_state_dict(sd, strict=False)
class SD1ClipModel(torch.nn.Module):
"""#### Class representing the SD1ClipModel."""
def __init__(
self, device: str = "cpu", dtype: torch.dtype = None, clip_name: str = "l", clip_model: type = SDClipModel, **kwargs
):
"""#### Initialize the SD1ClipModel.
#### Args:
- `device` (str, optional): The device to use. Defaults to "cpu".
- `dtype` (torch.dtype, optional): The data type. Defaults to None.
- `clip_name` (str, optional): The name of the CLIP model. Defaults to "l".
- `clip_model` (type, optional): The CLIP model class. Defaults to SDClipModel.
- `**kwargs`: Additional keyword arguments.
"""
super().__init__()
self.clip_name = clip_name
self.clip = "clip_{}".format(self.clip_name)
self.lowvram_patch_counter = 0
self.model_loaded_weight_memory = 0
setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs))
def set_clip_options(self, options: dict) -> None:
"""#### Set the CLIP options.
#### Args:
- `options` (dict): The options to set.
"""
getattr(self, self.clip).set_clip_options(options)
def reset_clip_options(self) -> None:
"""#### Reset the CLIP options to default."""
getattr(self, self.clip).reset_clip_options()
def encode_token_weights(self, token_weight_pairs: dict) -> tuple:
"""#### Encode token weights.
#### Args:
- `token_weight_pairs` (dict): The token weight pairs.
#### Returns:
- `tuple`: The encoded tokens and the pooled output.
"""
token_weight_pairs = token_weight_pairs[self.clip_name]
out, pooled = getattr(self, self.clip).encode_token_weights(token_weight_pairs)
return out, pooled |