Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,833 Bytes
d9a2e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
from einops import rearrange
import torch
from modules.Utilities import util
import torch.nn as nn
from modules.Attention import Attention
from modules.Device import Device
from modules.cond import Activation
from modules.cond import cast
from modules.sample import sampling_util
if Device.xformers_enabled():
pass
ops = cast.disable_weight_init
_ATTN_PRECISION = "fp32"
class FeedForward(nn.Module):
"""#### FeedForward neural network module.
#### Args:
- `dim` (int): The input dimension.
- `dim_out` (int, optional): The output dimension. Defaults to None.
- `mult` (int, optional): The multiplier for the inner dimension. Defaults to 4.
- `glu` (bool, optional): Whether to use Gated Linear Units. Defaults to False.
- `dropout` (float, optional): The dropout rate. Defaults to 0.0.
- `dtype` (torch.dtype, optional): The data type. Defaults to None.
- `device` (torch.device, optional): The device. Defaults to None.
- `operations` (object, optional): The operations module. Defaults to `ops`.
"""
def __init__(
self,
dim: int,
dim_out: int = None,
mult: int = 4,
glu: bool = False,
dropout: float = 0.0,
dtype: torch.dtype = None,
device: torch.device = None,
operations: object = ops,
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = util.default(dim_out, dim)
project_in = (
nn.Sequential(
operations.Linear(dim, inner_dim, dtype=dtype, device=device), nn.GELU()
)
if not glu
else Activation.GEGLU(dim, inner_dim)
)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""#### Forward pass of the FeedForward network.
#### Args:
- `x` (torch.Tensor): The input tensor.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
return self.net(x)
class BasicTransformerBlock(nn.Module):
"""#### Basic Transformer block.
#### Args:
- `dim` (int): The input dimension.
- `n_heads` (int): The number of attention heads.
- `d_head` (int): The dimension of each attention head.
- `dropout` (float, optional): The dropout rate. Defaults to 0.0.
- `context_dim` (int, optional): The context dimension. Defaults to None.
- `gated_ff` (bool, optional): Whether to use Gated FeedForward. Defaults to True.
- `checkpoint` (bool, optional): Whether to use checkpointing. Defaults to True.
- `ff_in` (bool, optional): Whether to use FeedForward input. Defaults to False.
- `inner_dim` (int, optional): The inner dimension. Defaults to None.
- `disable_self_attn` (bool, optional): Whether to disable self-attention. Defaults to False.
- `disable_temporal_crossattention` (bool, optional): Whether to disable temporal cross-attention. Defaults to False.
- `switch_temporal_ca_to_sa` (bool, optional): Whether to switch temporal cross-attention to self-attention. Defaults to False.
- `dtype` (torch.dtype, optional): The data type. Defaults to None.
- `device` (torch.device, optional): The device. Defaults to None.
- `operations` (object, optional): The operations module. Defaults to `ops`.
"""
def __init__(
self,
dim: int,
n_heads: int,
d_head: int,
dropout: float = 0.0,
context_dim: int = None,
gated_ff: bool = True,
checkpoint: bool = True,
ff_in: bool = False,
inner_dim: int = None,
disable_self_attn: bool = False,
disable_temporal_crossattention: bool = False,
switch_temporal_ca_to_sa: bool = False,
dtype: torch.dtype = None,
device: torch.device = None,
operations: object = ops,
):
super().__init__()
self.ff_in = ff_in or inner_dim is not None
if inner_dim is None:
inner_dim = dim
self.is_res = inner_dim == dim
self.disable_self_attn = disable_self_attn
self.attn1 = Attention.CrossAttention(
query_dim=inner_dim,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
context_dim=context_dim if self.disable_self_attn else None,
dtype=dtype,
device=device,
operations=operations,
) # is a self-attention if not self.disable_self_attn
self.ff = FeedForward(
inner_dim,
dim_out=dim,
dropout=dropout,
glu=gated_ff,
dtype=dtype,
device=device,
operations=operations,
)
context_dim_attn2 = None
if not switch_temporal_ca_to_sa:
context_dim_attn2 = context_dim
self.attn2 = Attention.CrossAttention(
query_dim=inner_dim,
context_dim=context_dim_attn2,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
dtype=dtype,
device=device,
operations=operations,
) # is self-attn if context is none
self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
self.checkpoint = checkpoint
self.n_heads = n_heads
self.d_head = d_head
self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
def forward(
self,
x: torch.Tensor,
context: torch.Tensor = None,
transformer_options: dict = {},
) -> torch.Tensor:
"""#### Forward pass of the Basic Transformer block.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `context` (torch.Tensor, optional): The context tensor. Defaults to None.
- `transformer_options` (dict, optional): Additional transformer options. Defaults to {}.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
return sampling_util.checkpoint(
self._forward,
(x, context, transformer_options),
self.parameters(),
self.checkpoint,
)
def _forward(
self,
x: torch.Tensor,
context: torch.Tensor = None,
transformer_options: dict = {},
) -> torch.Tensor:
"""#### Internal forward pass of the Basic Transformer block.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `context` (torch.Tensor, optional): The context tensor. Defaults to None.
- `transformer_options` (dict, optional): Additional transformer options. Defaults to {}.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
extra_options = {}
block = transformer_options.get("block", None)
block_index = transformer_options.get("block_index", 0)
transformer_patches_replace = {}
for k in transformer_options:
extra_options[k] = transformer_options[k]
extra_options["n_heads"] = self.n_heads
extra_options["dim_head"] = self.d_head
n = self.norm1(x)
context_attn1 = None
value_attn1 = None
transformer_block = (block[0], block[1], block_index)
attn1_replace_patch = transformer_patches_replace.get("attn1", {})
block_attn1 = transformer_block
if block_attn1 not in attn1_replace_patch:
block_attn1 = block
n = self.attn1(n, context=context_attn1, value=value_attn1)
x += n
if self.attn2 is not None:
n = self.norm2(x)
context_attn2 = context
value_attn2 = None
attn2_replace_patch = transformer_patches_replace.get("attn2", {})
block_attn2 = transformer_block
if block_attn2 not in attn2_replace_patch:
block_attn2 = block
n = self.attn2(n, context=context_attn2, value=value_attn2)
x += n
if self.is_res:
x_skip = x
x = self.ff(self.norm3(x))
if self.is_res:
x += x_skip
return x
class SpatialTransformer(nn.Module):
"""#### Spatial Transformer module.
#### Args:
- `in_channels` (int): The number of input channels.
- `n_heads` (int): The number of attention heads.
- `d_head` (int): The dimension of each attention head.
- `depth` (int, optional): The depth of the transformer. Defaults to 1.
- `dropout` (float, optional): The dropout rate. Defaults to 0.0.
- `context_dim` (int, optional): The context dimension. Defaults to None.
- `disable_self_attn` (bool, optional): Whether to disable self-attention. Defaults to False.
- `use_linear` (bool, optional): Whether to use linear projections. Defaults to False.
- `use_checkpoint` (bool, optional): Whether to use checkpointing. Defaults to True.
- `dtype` (torch.dtype, optional): The data type. Defaults to None.
- `device` (torch.device, optional): The device. Defaults to None.
- `operations` (object, optional): The operations module. Defaults to `ops`.
"""
def __init__(
self,
in_channels: int,
n_heads: int,
d_head: int,
depth: int = 1,
dropout: float = 0.0,
context_dim: int = None,
disable_self_attn: bool = False,
use_linear: bool = False,
use_checkpoint: bool = True,
dtype: torch.dtype = None,
device: torch.device = None,
operations: object = ops,
):
super().__init__()
if util.exists(context_dim) and not isinstance(context_dim, list):
context_dim = [context_dim] * depth
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = operations.GroupNorm(
num_groups=32,
num_channels=in_channels,
eps=1e-6,
affine=True,
dtype=dtype,
device=device,
)
if not use_linear:
self.proj_in = operations.Conv2d(
in_channels,
inner_dim,
kernel_size=1,
stride=1,
padding=0,
dtype=dtype,
device=device,
)
else:
self.proj_in = operations.Linear(
in_channels, inner_dim, dtype=dtype, device=device
)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
n_heads,
d_head,
dropout=dropout,
context_dim=context_dim[d],
disable_self_attn=disable_self_attn,
checkpoint=use_checkpoint,
dtype=dtype,
device=device,
operations=operations,
)
for d in range(depth)
]
)
if not use_linear:
self.proj_out = operations.Conv2d(
inner_dim,
in_channels,
kernel_size=1,
stride=1,
padding=0,
dtype=dtype,
device=device,
)
else:
self.proj_out = operations.Linear(
in_channels, inner_dim, dtype=dtype, device=device
)
self.use_linear = use_linear
def forward(
self,
x: torch.Tensor,
context: torch.Tensor = None,
transformer_options: dict = {},
) -> torch.Tensor:
"""#### Forward pass of the Spatial Transformer.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `context` (torch.Tensor, optional): The context tensor. Defaults to None.
- `transformer_options` (dict, optional): Additional transformer options. Defaults to {}.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
# note: if no context is given, cross-attention defaults to self-attention
if not isinstance(context, list):
context = [context] * len(self.transformer_blocks)
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
if not self.use_linear:
x = self.proj_in(x)
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
if self.use_linear:
x = self.proj_in(x)
for i, block in enumerate(self.transformer_blocks):
transformer_options["block_index"] = i
x = block(x, context=context[i], transformer_options=transformer_options)
if self.use_linear:
x = self.proj_out(x)
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
if not self.use_linear:
x = self.proj_out(x)
return x + x_in
def count_blocks(state_dict_keys: list, prefix_string: str) -> int:
"""#### Count the number of blocks in a state dictionary.
#### Args:
- `state_dict_keys` (list): The list of state dictionary keys.
- `prefix_string` (str): The prefix string to match.
#### Returns:
- `int`: The number of blocks.
"""
count = 0
while True:
c = False
for k in state_dict_keys:
if k.startswith(prefix_string.format(count)):
c = True
break
if c is False:
break
count += 1
return count
def calculate_transformer_depth(
prefix: str, state_dict_keys: list, state_dict: dict
) -> tuple:
"""#### Calculate the depth of a transformer.
#### Args:
- `prefix` (str): The prefix string.
- `state_dict_keys` (list): The list of state dictionary keys.
- `state_dict` (dict): The state dictionary.
#### Returns:
- `tuple`: The transformer depth, context dimension, use of linear in transformer, and time stack.
"""
context_dim = None
use_linear_in_transformer = False
transformer_prefix = prefix + "1.transformer_blocks."
transformer_keys = sorted(
list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys))
)
if len(transformer_keys) > 0:
last_transformer_depth = count_blocks(
state_dict_keys, transformer_prefix + "{}"
)
context_dim = state_dict[
"{}0.attn2.to_k.weight".format(transformer_prefix)
].shape[1]
use_linear_in_transformer = (
len(state_dict["{}1.proj_in.weight".format(prefix)].shape) == 2
)
time_stack = (
"{}1.time_stack.0.attn1.to_q.weight".format(prefix) in state_dict
or "{}1.time_mix_blocks.0.attn1.to_q.weight".format(prefix) in state_dict
)
return (
last_transformer_depth,
context_dim,
use_linear_in_transformer,
time_stack,
)
return None
|