File size: 51,647 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d117d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
import logging
import platform
import sys
from enum import Enum
from typing import Tuple, Union
import packaging.version

import psutil
import torch

if packaging.version.parse(torch.__version__) >= packaging.version.parse("1.12.0"):
    torch.backends.cuda.matmul.allow_tf32 = True


class VRAMState(Enum):
    """#### Enum for VRAM states.

    """
    DISABLED = 0  # No vram present: no need to move _internal to vram
    NO_VRAM = 1  # Very low vram: enable all the options to save vram
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
    SHARED = 5  # No dedicated vram: memory shared between CPU and GPU but _internal still need to be moved between both.


class CPUState(Enum):
    """#### Enum for CPU states.

    """
    GPU = 0
    CPU = 1
    MPS = 2


# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
cpu_state = CPUState.GPU

total_vram = 0

lowvram_available = True
xpu_available = False

directml_enabled = False
try:
    if torch.xpu.is_available():
        xpu_available = True
except:
    pass

try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
        import torch.mps
except:
    pass


def is_intel_xpu() -> bool:
    """#### Check if Intel XPU is available.



    #### Returns:

        - `bool`: Whether Intel XPU is available.

    """
    global cpu_state
    global xpu_available
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False


def get_torch_device() -> torch.device:
    """#### Get the torch device.

    

    #### Returns:

        - `torch.device`: The torch device.

    """
    global directml_enabled
    global cpu_state
    if directml_enabled:
        global directml_device
        return directml_device
    if cpu_state == CPUState.MPS:
        return torch.device("mps")
    if cpu_state == CPUState.CPU:
        return torch.device("cpu")
    else:
        if is_intel_xpu():
            return torch.device("xpu", torch.xpu.current_device())
        else:
            if torch.cuda.is_available():
                return torch.device(torch.cuda.current_device())
            else:
                return torch.device("cpu")


def get_total_memory(dev: torch.device = None, torch_total_too: bool = False) -> int:
    """#### Get the total memory.



    #### Args:

        - `dev` (torch.device, optional): The device. Defaults to None.

        - `torch_total_too` (bool, optional): Whether to get the total memory in PyTorch. Defaults to False.



    #### Returns:

        - `int`: The total memory.

    """
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, "type") and (dev.type == "cpu" or dev.type == "mps"):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024
            mem_total_torch = mem_total
        elif is_intel_xpu():
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats["reserved_bytes.all.current"]
            mem_total_torch = mem_reserved
            mem_total = torch.xpu.get_device_properties(dev).total_memory
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats["reserved_bytes.all.current"]
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total


total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
logging.info(
    "Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)
)
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
try:
    import xformers
    import xformers.ops

    XFORMERS_IS_AVAILABLE = True
    try:
        XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
    except:
        pass
    try:
        XFORMERS_VERSION = xformers.version.__version__
        logging.info("xformers version: {}".format(XFORMERS_VERSION))
        if XFORMERS_VERSION.startswith("0.0.18"):
            logging.warning(
                "\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images."
            )
            logging.warning(
                "Please downgrade or upgrade xformers to a different version.\n"
            )
            XFORMERS_ENABLED_VAE = False
    except:
        pass
except:
    XFORMERS_IS_AVAILABLE = False


def is_nvidia() -> bool:
    """#### Checks if user has an Nvidia GPU



    #### Returns

        - `bool`: Whether the GPU is Nvidia

    """
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
    return False


ENABLE_PYTORCH_ATTENTION = False

VAE_DTYPE = torch.float32

try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
            if ENABLE_PYTORCH_ATTENTION is False:
                ENABLE_PYTORCH_ATTENTION = True
            if (
                torch.cuda.is_bf16_supported()
                and torch.cuda.get_device_properties(torch.cuda.current_device()).major
                >= 8
            ):
                VAE_DTYPE = torch.bfloat16
except:
    pass

if is_intel_xpu():
    VAE_DTYPE = torch.bfloat16

if ENABLE_PYTORCH_ATTENTION:
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)


FORCE_FP32 = False
FORCE_FP16 = False

if lowvram_available:
    if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
        vram_state = set_vram_to

if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED

if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED

logging.info(f"Set vram state to: {vram_state.name}")

DISABLE_SMART_MEMORY = False

if DISABLE_SMART_MEMORY:
    logging.info("Disabling smart memory management")


def get_torch_device_name(device: torch.device) -> str:
    """#### Get the name of the torch compatible device



    #### Args:

        - `device` (torch.device): the device



    #### Returns:

        - `str`: the name of the device

    """
    if hasattr(device, "type"):
        if device.type == "cuda":
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(
                device, torch.cuda.get_device_name(device), allocator_backend
            )
        else:
            return "{}".format(device.type)
    elif is_intel_xpu():
        return "{} {}".format(device, torch.xpu.get_device_name(device))
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))


try:
    logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
except:
    logging.warning("Could not pick default device.")

logging.info("VAE dtype: {}".format(VAE_DTYPE))

current_loaded_models = []


def module_size(module: torch.nn.Module) -> int:
    """#### Get the size of a module

    

    #### Args:

        - `module` (torch.nn.Module): The module

    

    #### Returns:

        - `int`: The size of the module

    """
    module_mem = 0
    sd = module.state_dict()
    for k in sd:
        t = sd[k]
        module_mem += t.nelement() * t.element_size()
    return module_mem


class LoadedModel:
    """#### Class to load a model

    """
    def __init__(self, model: torch.nn.Module):
        """#### Initialize the class

        

        #### Args:

            - `model`: The model

        """
        self.model = model
        self.device = model.load_device
        self.weights_loaded = False
        self.real_model = None

    def model_memory(self):
        """#### Get the model memory

        

        #### Returns:

            - `int`: The model memory

        """
        return self.model.model_size()

    
    def model_offloaded_memory(self):
        """#### Get the offloaded model memory

        

        #### Returns:

            - `int`: The offloaded model memory

        """
        return self.model.model_size() - self.model.loaded_size()

    def model_memory_required(self, device: torch.device) -> int:
        """#### Get the required model memory

        

        #### Args:

            - `device`: The device

        

        #### Returns:

            - `int`: The required model memory

        """
        if hasattr(self.model, 'current_loaded_device') and device == self.model.current_loaded_device():
            return self.model_offloaded_memory()
        else:
            return self.model_memory()

    def model_load(self, lowvram_model_memory: int = 0, force_patch_weights: bool = False) -> torch.nn.Module:
        """#### Load the model

        

        #### Args:

            - `lowvram_model_memory` (int, optional): The low VRAM model memory. Defaults to 0.

            - `force_patch_weights` (bool, optional): Whether to force patch the weights. Defaults to False.

        

        #### Returns:

            - `torch.nn.Module`: The real model

        """
        patch_model_to = self.device

        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())

        load_weights = not self.weights_loaded

        try:
            if hasattr(self.model, "patch_model_lowvram") and  lowvram_model_memory > 0 and load_weights:
                self.real_model = self.model.patch_model_lowvram(
                    device_to=patch_model_to,
                    lowvram_model_memory=lowvram_model_memory,
                    force_patch_weights=force_patch_weights,
                )
            else:
                self.real_model = self.model.patch_model(
                    device_to=patch_model_to, patch_weights=load_weights
                )
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
        self.weights_loaded = True
        return self.real_model

    def model_load_flux(self, lowvram_model_memory: int = 0, force_patch_weights: bool = False) -> torch.nn.Module:
        """#### Load the model

        

        #### Args:

            - `lowvram_model_memory` (int, optional): The low VRAM model memory. Defaults to 0.

            - `force_patch_weights` (bool, optional): Whether to force patch the weights. Defaults to False.

        

        #### Returns:

            - `torch.nn.Module`: The real model

        """
        patch_model_to = self.device

        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())

        load_weights = not self.weights_loaded

        if self.model.loaded_size() > 0:
            use_more_vram = lowvram_model_memory
            if use_more_vram == 0:
                use_more_vram = 1e32
            self.model_use_more_vram(use_more_vram)
        else:
            try:
                self.real_model = self.model.patch_model_flux(
                    device_to=patch_model_to,
                    lowvram_model_memory=lowvram_model_memory,
                    load_weights=load_weights,
                    force_patch_weights=force_patch_weights,
                )
            except Exception as e:
                self.model.unpatch_model(self.model.offload_device)
                self.model_unload()
                raise e

        if (
            is_intel_xpu()
            and "ipex" in globals()
            and self.real_model is not None
        ):
            import ipex
            with torch.no_grad():
                self.real_model = ipex.optimize(
                    self.real_model.eval(),
                    inplace=True,
                    graph_mode=True,
                    concat_linear=True,
                )

        self.weights_loaded = True
        return self.real_model
    
    def should_reload_model(self, force_patch_weights: bool = False) -> bool:
        """#### Checks if the model should be reloaded



        #### Args:

            - `force_patch_weights` (bool, optional): If model reloading should be enforced. Defaults to False.



        #### Returns:

            - `bool`: Whether the model should be reloaded

        """
        if force_patch_weights and self.model.lowvram_patch_counter > 0:
            return True
        return False

    def model_unload(self, unpatch_weights: bool = True) -> None:
        """#### Unloads the patched model



        #### Args:

            - `unpatch_weights` (bool, optional): Whether the weights should be unpatched. Defaults to True.

        """
        self.model.unpatch_model(
            self.model.offload_device, unpatch_weights=unpatch_weights
        )
        self.model.model_patches_to(self.model.offload_device)
        self.weights_loaded = self.weights_loaded and not unpatch_weights
        self.real_model = None

    def model_use_more_vram(self, extra_memory: int) -> int:
        """#### Use more VRAM

        

        #### Args:

            - `extra_memory`: The extra memory

        """
        return self.model.partially_load(self.device, extra_memory)
    
    def __eq__(self, other: torch.nn.Module) -> bool:
        """#### Verify if the model is equal to another



        #### Args:

            - `other` (torch.nn.Module): the other model



        #### Returns:

            - `bool`: Whether the two models are equal

        """
        return self.model is other.model


def minimum_inference_memory() -> int:
    """#### The minimum memory requirement for inference, equals to 1024^3



    #### Returns:

        - `int`: the memory requirement

    """
    return 1024 * 1024 * 1024


def unload_model_clones(model: torch.nn.Module, unload_weights_only:bool = True, force_unload: bool = True) -> bool:
    """#### Unloads the model clones



    #### Args:

        - `model` (torch.nn.Module): The model

        - `unload_weights_only` (bool, optional): Whether to unload only the weights. Defaults to True.

        - `force_unload` (bool, optional): Whether to force the unload. Defaults to True.



    #### Returns:

        - `bool`: Whether the model was unloaded

    """
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    if len(to_unload) == 0:
        return True

    same_weights = 0

    if same_weights == len(to_unload):
        unload_weight = False
    else:
        unload_weight = True

    if not force_unload:
        if unload_weights_only and unload_weight is False:
            return None

    for i in to_unload:
        logging.debug("unload clone {} {}".format(i, unload_weight))
        current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight)

    return unload_weight


def free_memory(memory_required: int, device: torch.device, keep_loaded: list = []) -> None:
    """#### Free memory

    

    #### Args:

        - `memory_required` (int): The required memory

        - `device` (torch.device): The device

        - `keep_loaded` (list, optional): The list of loaded models to keep. Defaults to [].

    """
    unloaded_model = []
    can_unload = []

    for i in range(len(current_loaded_models) - 1, -1, -1):
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
                can_unload.append(
                    (sys.getrefcount(shift_model.model), shift_model.model_memory(), i)
                )

    for x in sorted(can_unload):
        i = x[-1]
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
        current_loaded_models[i].model_unload()
        unloaded_model.append(i)

    for i in sorted(unloaded_model, reverse=True):
        current_loaded_models.pop(i)

    if len(unloaded_model) > 0:
        soft_empty_cache()
    else:
        if vram_state != VRAMState.HIGH_VRAM:
            mem_free_total, mem_free_torch = get_free_memory(
                device, torch_free_too=True
            )
            if mem_free_torch > mem_free_total * 0.25:
                soft_empty_cache()

def use_more_memory(extra_memory: int, loaded_models: list, device: torch.device) -> None:
    """#### Use more memory

    

    #### Args:

        - `extra_memory` (int): The extra memory

        - `loaded_models` (list): The loaded models

        - `device` (torch.device): The device

    """
    for m in loaded_models:
        if m.device == device:
            extra_memory -= m.model_use_more_vram(extra_memory)
            if extra_memory <= 0:
                break

WINDOWS = any(platform.win32_ver())

EXTRA_RESERVED_VRAM = 400 * 1024 * 1024
if WINDOWS:
    EXTRA_RESERVED_VRAM = (
        600 * 1024 * 1024
    )  # Windows is higher because of the shared vram issue

def extra_reserved_memory() -> int:
    """#### Extra reserved memory

    

    #### Returns:

        - `int`: The extra reserved memory

    """
    return EXTRA_RESERVED_VRAM

def offloaded_memory(loaded_models: list, device: torch.device) -> int:
    """#### Offloaded memory

    

    #### Args:

        - `loaded_models` (list): The loaded models

        - `device` (torch.device): The device

        

    #### Returns:

        - `int`: The offloaded memory

    """
    offloaded_mem = 0
    for m in loaded_models:
        if m.device == device:
            offloaded_mem += m.model_offloaded_memory()
    return offloaded_mem

def load_models_gpu(models: list, memory_required: int = 0, force_patch_weights: bool = False, minimum_memory_required=None, force_full_load=False, flux_enabled: bool = False) -> None:
    """#### Load models on the GPU

    

    #### Args:

        - `models`(list): The models

        - `memory_required` (int, optional): The required memory. Defaults to 0.

        - `force_patch_weights` (bool, optional): Whether to force patch the weights. Defaults to False.

        - `minimum_memory_required` (int, optional): The minimum memory required. Defaults to None.

        - `force_full_load` (bool, optional

        - `flux_enabled` (bool, optional): Whether flux is enabled. Defaults to False.

    """
    global vram_state
    if not flux_enabled:
    
        inference_memory = minimum_inference_memory()
        extra_mem = max(inference_memory, memory_required)

        models = set(models)

        models_to_load = []
        models_already_loaded = []
        for x in models:
            loaded_model = LoadedModel(x)
            loaded = None

            try:
                loaded_model_index = current_loaded_models.index(loaded_model)
            except:
                loaded_model_index = None

            if loaded_model_index is not None:
                loaded = current_loaded_models[loaded_model_index]
                if loaded.should_reload_model(force_patch_weights=force_patch_weights):
                    current_loaded_models.pop(loaded_model_index).model_unload(
                        unpatch_weights=True
                    )
                    loaded = None
                else:
                    models_already_loaded.append(loaded)

            if loaded is None:
                if hasattr(x, "model"):
                    logging.info(f"Requested to load {x.model.__class__.__name__}")
                models_to_load.append(loaded_model)

        if len(models_to_load) == 0:
            devs = set(map(lambda a: a.device, models_already_loaded))
            for d in devs:
                if d != torch.device("cpu"):
                    free_memory(extra_mem, d, models_already_loaded)
            return

        logging.info(
            f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}"
        )

        total_memory_required = {}
        for loaded_model in models_to_load:
            if (
                unload_model_clones(
                    loaded_model.model, unload_weights_only=True, force_unload=False
                )
                is True
            ):  # unload clones where the weights are different
                total_memory_required[loaded_model.device] = total_memory_required.get(
                    loaded_model.device, 0
                ) + loaded_model.model_memory_required(loaded_model.device)

        for device in total_memory_required:
            if device != torch.device("cpu"):
                free_memory(
                    total_memory_required[device] * 1.3 + extra_mem,
                    device,
                    models_already_loaded,
                )

        for loaded_model in models_to_load:
            weights_unloaded = unload_model_clones(
                loaded_model.model, unload_weights_only=False, force_unload=False
            )  # unload the rest of the clones where the weights can stay loaded
            if weights_unloaded is not None:
                loaded_model.weights_loaded = not weights_unloaded

        for loaded_model in models_to_load:
            model = loaded_model.model
            torch_dev = model.load_device
            if is_device_cpu(torch_dev):
                vram_set_state = VRAMState.DISABLED
            else:
                vram_set_state = vram_state
            lowvram_model_memory = 0
            if lowvram_available and (
                vram_set_state == VRAMState.LOW_VRAM
                or vram_set_state == VRAMState.NORMAL_VRAM
            ):
                model_size = loaded_model.model_memory_required(torch_dev)
                current_free_mem = get_free_memory(torch_dev)
                lowvram_model_memory = int(
                    max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3)
                )
                if model_size > (
                    current_free_mem - inference_memory
                ):  # only switch to lowvram if really necessary
                    vram_set_state = VRAMState.LOW_VRAM
                else:
                    lowvram_model_memory = 0

            if vram_set_state == VRAMState.NO_VRAM:
                lowvram_model_memory = 64 * 1024 * 1024

            loaded_model.model_load(
                lowvram_model_memory, force_patch_weights=force_patch_weights
            )
            current_loaded_models.insert(0, loaded_model)
        return
    else:
        inference_memory = minimum_inference_memory()
        extra_mem = max(inference_memory, memory_required + extra_reserved_memory())
        if minimum_memory_required is None:
            minimum_memory_required = extra_mem
        else:
            minimum_memory_required = max(
                inference_memory, minimum_memory_required + extra_reserved_memory()
            )

        models = set(models)

        models_to_load = []
        models_already_loaded = []
        for x in models:
            loaded_model = LoadedModel(x)
            loaded = None

            try:
                loaded_model_index = current_loaded_models.index(loaded_model)
            except:
                loaded_model_index = None

            if loaded_model_index is not None:
                loaded = current_loaded_models[loaded_model_index]
                if loaded.should_reload_model(
                    force_patch_weights=force_patch_weights
                ):  # TODO: cleanup this model reload logic
                    current_loaded_models.pop(loaded_model_index).model_unload(
                        unpatch_weights=True
                    )
                    loaded = None
                else:
                    loaded.currently_used = True
                    models_already_loaded.append(loaded)

            if loaded is None:
                if hasattr(x, "model"):
                    logging.info(f"Requested to load {x.model.__class__.__name__}")
                models_to_load.append(loaded_model)

        if len(models_to_load) == 0:
            devs = set(map(lambda a: a.device, models_already_loaded))
            for d in devs:
                if d != torch.device("cpu"):
                    free_memory(
                        extra_mem + offloaded_memory(models_already_loaded, d),
                        d,
                        models_already_loaded,
                    )
                    free_mem = get_free_memory(d)
                    if free_mem < minimum_memory_required:
                        logging.info(
                            "Unloading models for lowram load."
                        )  # TODO: partial model unloading when this case happens, also handle the opposite case where models can be unlowvramed.
                        models_to_load = free_memory(minimum_memory_required, d)
                        logging.info("{} models unloaded.".format(len(models_to_load)))
                    else:
                        use_more_memory(
                            free_mem - minimum_memory_required, models_already_loaded, d
                        )
            if len(models_to_load) == 0:
                return

        logging.info(
            f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}"
        )

        total_memory_required = {}
        for loaded_model in models_to_load:
            unload_model_clones(
                loaded_model.model, unload_weights_only=True, force_unload=False
            )  # unload clones where the weights are different
            total_memory_required[loaded_model.device] = total_memory_required.get(
                loaded_model.device, 0
            ) + loaded_model.model_memory_required(loaded_model.device)

        for loaded_model in models_already_loaded:
            total_memory_required[loaded_model.device] = total_memory_required.get(
                loaded_model.device, 0
            ) + loaded_model.model_memory_required(loaded_model.device)

        for loaded_model in models_to_load:
            weights_unloaded = unload_model_clones(
                loaded_model.model, unload_weights_only=False, force_unload=False
            )  # unload the rest of the clones where the weights can stay loaded
            if weights_unloaded is not None:
                loaded_model.weights_loaded = not weights_unloaded

        for device in total_memory_required:
            if device != torch.device("cpu"):
                free_memory(
                    total_memory_required[device] * 1.1 + extra_mem,
                    device,
                    models_already_loaded,
                )

        for loaded_model in models_to_load:
            model = loaded_model.model
            torch_dev = model.load_device
            if is_device_cpu(torch_dev):
                vram_set_state = VRAMState.DISABLED
            else:
                vram_set_state = vram_state
            lowvram_model_memory = 0
            if (
                lowvram_available
                and (
                    vram_set_state == VRAMState.LOW_VRAM
                    or vram_set_state == VRAMState.NORMAL_VRAM
                )
                and not force_full_load
            ):
                model_size = loaded_model.model_memory_required(torch_dev)
                current_free_mem = get_free_memory(torch_dev)
                lowvram_model_memory = max(
                    64 * (1024 * 1024),
                    (current_free_mem - minimum_memory_required),
                    min(
                        current_free_mem * 0.4,
                        current_free_mem - minimum_inference_memory(),
                    ),
                )
                if (
                    model_size <= lowvram_model_memory
                ):  # only switch to lowvram if really necessary
                    lowvram_model_memory = 0

            if vram_set_state == VRAMState.NO_VRAM:
                lowvram_model_memory = 64 * 1024 * 1024

            loaded_model.model_load_flux(
                lowvram_model_memory, force_patch_weights=force_patch_weights
            )
            current_loaded_models.insert(0, loaded_model)

        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_mem = get_free_memory(d)
                if free_mem > minimum_memory_required:
                    use_more_memory(
                        free_mem - minimum_memory_required, models_already_loaded, d
                    )
        return

def load_model_gpu(model: torch.nn.Module, flux_enabled:bool = False) -> None:
    """#### Load a model on the GPU

    

    #### Args:

        - `model` (torch.nn.Module): The model

        - `flux_enable` (bool, optional): Whether flux is enabled. Defaults to False.

    """
    return load_models_gpu([model], flux_enabled=flux_enabled)


def cleanup_models(keep_clone_weights_loaded:bool = False):
    """#### Cleanup the models

    

    #### Args:

        - `keep_clone_weights_loaded` (bool, optional): Whether to keep the clone weights loaded. Defaults to False.

    """
    to_delete = []
    for i in range(len(current_loaded_models)):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            if not keep_clone_weights_loaded:
                to_delete = [i] + to_delete
            elif (
                sys.getrefcount(current_loaded_models[i].real_model) <= 3
            ):  # references from .real_model + the .model
                to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x


def dtype_size(dtype: torch.dtype) -> int:
    """#### Get the size of a dtype



    #### Args:

        - `dtype` (torch.dtype): The dtype



    #### Returns:

        - `int`: The size of the dtype

    """
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
    elif dtype == torch.float32:
        dtype_size = 4
    else:
        try:
            dtype_size = dtype.itemsize
        except:  # Old pytorch doesn't have .itemsize
            pass
    return dtype_size


def unet_offload_device() -> torch.device:
    """#### Get the offload device for UNet

    

    #### Returns:

        - `torch.device`: The offload device

    """
    if vram_state == VRAMState.HIGH_VRAM:
        return get_torch_device()
    else:
        return torch.device("cpu")


def unet_inital_load_device(parameters, dtype) -> torch.device:
    """#### Get the initial load device for UNet

    

    #### Args:

        - `parameters` (int): The parameters

        - `dtype` (torch.dtype): The dtype

    

    #### Returns:

        - `torch.device`: The initial load device

    """
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
    if DISABLE_SMART_MEMORY:
        return cpu_dev

    model_size = dtype_size(dtype) * parameters

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev


def unet_dtype(

    device: torch.dtype = None,

    model_params: int = 0,

    supported_dtypes: list = [torch.float16, torch.bfloat16, torch.float32],

) -> torch.dtype:
    """#### Get the dtype for UNet



    #### Args:

        - `device` (torch.dtype, optional): The device. Defaults to None.

        - `model_params` (int, optional): The model parameters. Defaults to 0.

        - `supported_dtypes` (list, optional): The supported dtypes. Defaults to [torch.float16, torch.bfloat16, torch.float32].



    #### Returns:

        - `torch.dtype`: The dtype

    """
    if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
        if torch.float16 in supported_dtypes:
            return torch.float16
    if should_use_bf16(device, model_params=model_params, manual_cast=True):
        if torch.bfloat16 in supported_dtypes:
            return torch.bfloat16
    return torch.float32


# None means no manual cast
def unet_manual_cast(

    weight_dtype: torch.dtype,

    inference_device: torch.device,

    supported_dtypes: list = [torch.float16, torch.bfloat16, torch.float32],

) -> torch.dtype:
    """#### Manual cast for UNet



    #### Args:

        - `weight_dtype` (torch.dtype): The dtype of the weights

        - `inference_device` (torch.device): The device used for inference

        - `supported_dtypes` (list, optional): The supported dtypes. Defaults to [torch.float16, torch.bfloat16, torch.float32].



    #### Returns:

        - `torch.dtype`: The dtype

    """
    if weight_dtype == torch.float32:
        return None

    fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
    if fp16_supported and weight_dtype == torch.float16:
        return None

    bf16_supported = should_use_bf16(inference_device)
    if bf16_supported and weight_dtype == torch.bfloat16:
        return None

    if fp16_supported and torch.float16 in supported_dtypes:
        return torch.float16

    elif bf16_supported and torch.bfloat16 in supported_dtypes:
        return torch.bfloat16
    else:
        return torch.float32


def text_encoder_offload_device() -> torch.device:
    """#### Get the offload device for the text encoder

    

    #### Returns:

        - `torch.device`: The offload device

    """
    return torch.device("cpu")


def text_encoder_device() -> torch.device:
    """#### Get the device for the text encoder

    

    #### Returns:

        - `torch.device`: The device

    """
    if vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
        if should_use_fp16(prioritize_performance=False):
            return get_torch_device()
        else:
            return torch.device("cpu")
    else:
        return torch.device("cpu")
    
def text_encoder_initial_device(load_device: torch.device, offload_device: torch.device, model_size: int = 0) -> torch.device:
    """#### Get the initial device for the text encoder

    

    #### Args:

        - `load_device` (torch.device): The load device

        - `offload_device` (torch.device): The offload device

        - `model_size` (int, optional): The model size. Defaults to 0.

    

    #### Returns:

        - `torch.device`: The initial device

    """
    if load_device == offload_device or model_size <= 1024 * 1024 * 1024:
        return offload_device

    if is_device_mps(load_device):
        return offload_device

    mem_l = get_free_memory(load_device)
    mem_o = get_free_memory(offload_device)
    if mem_l > (mem_o * 0.5) and model_size * 1.2 < mem_l:
        return load_device
    else:
        return offload_device


def text_encoder_dtype(device: torch.device = None) -> torch.dtype:
    """#### Get the dtype for the text encoder



    #### Args:

        - `device` (torch.device, optional): The device used by the text encoder. Defaults to None.



    Returns:

        torch.dtype: The dtype

    """
    if is_device_cpu(device):
        return torch.float16

    return torch.float16


def intermediate_device() -> torch.device:
    """#### Get the intermediate device

    

    #### Returns:

        - `torch.device`: The intermediate device

    """
    return torch.device("cpu")


def vae_device() -> torch.device:
    """#### Get the VAE device

    

    #### Returns:

        - `torch.device`: The VAE device

    """
    return get_torch_device()


def vae_offload_device() -> torch.device:
    """#### Get the offload device for VAE

    

    #### Returns:

        - `torch.device`: The offload device

    """
    return torch.device("cpu")


def vae_dtype():
    """#### Get the dtype for VAE

    

    #### Returns:

        - `torch.dtype`: The dtype

    """
    global VAE_DTYPE
    return VAE_DTYPE


def get_autocast_device(dev: torch.device) -> str:
    """#### Get the autocast device

    

    #### Args:

        - `dev` (torch.device): The device

    

    #### Returns:

        - `str`: The autocast device type

    """
    if hasattr(dev, "type"):
        return dev.type
    return "cuda"


def supports_dtype(device: torch.device, dtype: torch.dtype) -> bool:
    """#### Check if the device supports the dtype

    

    #### Args:

        - `device` (torch.device): The device to check

        - `dtype`  (torch.dtype): The dtype to check support

        

    #### Returns:

        - `bool`: Whether the dtype is supported by the device

    """
    if dtype == torch.float32:
        return True
    if is_device_cpu(device):
        return False
    if dtype == torch.float16:
        return True
    if dtype == torch.bfloat16:
        return True
    return False


def device_supports_non_blocking(device: torch.device) -> bool:
    """#### Check if the device supports non-blocking



    #### Args:

        - `device` (torch.device): The device to check



    #### Returns:

        - `bool`: Whether the device supports non-blocking

    """
    if is_device_mps(device):
        return False  # pytorch bug? mps doesn't support non blocking
    return True

def supports_cast(device: torch.device, dtype: torch.dtype):  # TODO
    """#### Check if the device supports casting

    

    #### Args:

        - `device`: The device

        - `dtype`: The dtype

    

    #### Returns:

        - `bool`: Whether the device supports casting

    """
    if dtype == torch.float32:
        return True
    if dtype == torch.float16:
        return True
    if directml_enabled:
        return False
    if dtype == torch.bfloat16:
        return True
    if is_device_mps(device):
        return False
    if dtype == torch.float8_e4m3fn:
        return True
    if dtype == torch.float8_e5m2:
        return True
    return False

def cast_to_device(tensor: torch.Tensor, device: torch.device, dtype: torch.dtype, copy: bool = False) -> torch.Tensor:
    """#### Cast a tensor to a device



    #### Args:

        - `tensor` (torch.Tensor): The tensor to cast

        - `device` (torch.device): The device to cast the tensor to

        - `dtype` (torch.dtype): The dtype precision to cast to

        - `copy` (bool, optional): Whether to copy the tensor. Defaults to False.



    #### Returns:

        - `torch.Tensor`: The tensor cast to the device

    """
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, "type") and device.type.startswith("cuda"):
            device_supports_cast = True
        elif is_intel_xpu():
            device_supports_cast = True

    non_blocking = device_supports_non_blocking(device)

    if device_supports_cast:
        if copy:
            if tensor.device == device:
                return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
            return tensor.to(device, copy=copy, non_blocking=non_blocking).to(
                dtype, non_blocking=non_blocking
            )
        else:
            return tensor.to(device, non_blocking=non_blocking).to(
                dtype, non_blocking=non_blocking
            )
    else:
        return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)

def pick_weight_dtype(dtype: torch.dtype, fallback_dtype: torch.dtype, device: torch.device) -> torch.dtype:
    """#### Pick the weight dtype

    

    #### Args:

        - `dtype`: The dtype

        - `fallback_dtype`: The fallback dtype

        - `device`: The device

        

    #### Returns:

        - `torch.dtype`: The weight dtype

    """
    if dtype is None:
        dtype = fallback_dtype
    elif dtype_size(dtype) > dtype_size(fallback_dtype):
        dtype = fallback_dtype

    if not supports_cast(device, dtype):
        dtype = fallback_dtype

    return dtype

def xformers_enabled() -> bool:
    """#### Check if xformers is enabled

    

    #### Returns:

        - `bool`: Whether xformers is enabled

    """
    global directml_enabled
    global cpu_state
    if cpu_state != CPUState.GPU:
        return False
    if is_intel_xpu():
        return False
    if directml_enabled:
        return False
    return XFORMERS_IS_AVAILABLE


def xformers_enabled_vae() -> bool:
    """#### Check if xformers is enabled for VAE

    

    #### Returns:

        - `bool`: Whether xformers is enabled for VAE

    """
    enabled = xformers_enabled()
    if not enabled:
        return False

    return XFORMERS_ENABLED_VAE


def pytorch_attention_enabled() -> bool:
    """#### Check if PyTorch attention is enabled

    

    #### Returns:

        - `bool`: Whether PyTorch attention is enabled

    """
    global ENABLE_PYTORCH_ATTENTION
    return ENABLE_PYTORCH_ATTENTION

def pytorch_attention_flash_attention() -> bool:
    """#### Check if PyTorch flash attention is enabled and supported.



    #### Returns:

        - `bool`: True if PyTorch flash attention is enabled and supported, False otherwise.

    """
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        if is_nvidia():  # pytorch flash attention only works on Nvidia
            return True
    return False


def get_free_memory(dev: torch.device = None, torch_free_too: bool = False) -> Union[int, Tuple[int, int]]:
    """#### Get the free memory available on the device.



    #### Args:

        - `dev` (torch.device, optional): The device to check memory for. Defaults to None.

        - `torch_free_too` (bool, optional): Whether to return both total and torch free memory. Defaults to False.



    #### Returns:

        - `int` or `Tuple[int, int]`: The free memory available. If `torch_free_too` is True, returns a tuple of total and torch free memory.

    """
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, "type") and (dev.type == "cpu" or dev.type == "mps"):
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024
            mem_free_torch = mem_free_total
        elif is_intel_xpu():
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats["active_bytes.all.current"]
            mem_reserved = stats["reserved_bytes.all.current"]
            mem_free_torch = mem_reserved - mem_active
            mem_free_xpu = (
                torch.xpu.get_device_properties(dev).total_memory - mem_reserved
            )
            mem_free_total = mem_free_xpu + mem_free_torch
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats["active_bytes.all.current"]
            mem_reserved = stats["reserved_bytes.all.current"]
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total


def cpu_mode() -> bool:
    """#### Check if the current mode is CPU.



    #### Returns:

        - `bool`: True if the current mode is CPU, False otherwise.

    """
    global cpu_state
    return cpu_state == CPUState.CPU


def mps_mode() -> bool:
    """#### Check if the current mode is MPS.



    #### Returns:

        - `bool`: True if the current mode is MPS, False otherwise.

    """
    global cpu_state
    return cpu_state == CPUState.MPS


def is_device_type(device: torch.device, type: str) -> bool:
    """#### Check if the device is of a specific type.



    #### Args:

        - `device` (torch.device): The device to check.

        - `type` (str): The type to check for.



    #### Returns:

        - `bool`: True if the device is of the specified type, False otherwise.

    """
    if hasattr(device, "type"):
        if device.type == type:
            return True
    return False


def is_device_cpu(device: torch.device) -> bool:
    """#### Check if the device is a CPU.



    #### Args:

        - `device` (torch.device): The device to check.



    #### Returns:

        - `bool`: True if the device is a CPU, False otherwise.

    """
    return is_device_type(device, "cpu")


def is_device_mps(device: torch.device) -> bool:
    """#### Check if the device is an MPS.



    #### Args:

        - `device` (torch.device): The device to check.



    #### Returns:

        - `bool`: True if the device is an MPS, False otherwise.

    """
    return is_device_type(device, "mps")


def is_device_cuda(device: torch.device) -> bool:
    """#### Check if the device is a CUDA device.



    #### Args:

        - `device` (torch.device): The device to check.



    #### Returns:

        - `bool`: True if the device is a CUDA device, False otherwise.

    """
    return is_device_type(device, "cuda")


def should_use_fp16(

    device: torch.device = None, model_params: int = 0, prioritize_performance: bool = True, manual_cast: bool = False

) -> bool:
    """#### Determine if FP16 should be used.



    #### Args:

        - `device` (torch.device, optional): The device to check. Defaults to None.

        - `model_params` (int, optional): The number of model parameters. Defaults to 0.

        - `prioritize_performance` (bool, optional): Whether to prioritize performance. Defaults to True.

        - `manual_cast` (bool, optional): Whether to manually cast. Defaults to False.



    #### Returns:

        - `bool`: True if FP16 should be used, False otherwise.

    """
    global directml_enabled

    if device is not None:
        if is_device_cpu(device):
            return False

    if FORCE_FP16:
        return True

    if device is not None:
        if is_device_mps(device):
            return True

    if FORCE_FP32:
        return False

    if directml_enabled:
        return False

    if mps_mode():
        return True

    if cpu_mode():
        return False

    if is_intel_xpu():
        return True

    if torch.version.hip:
        return True

    if torch.cuda.is_available():
        props = torch.cuda.get_device_properties("cuda")
    else:
        return False
    if props.major >= 8:
        return True

    if props.major < 6:
        return False

    fp16_works = False
    nvidia_10_series = [
        "1080",
        "1070",
        "titan x",
        "p3000",
        "p3200",
        "p4000",
        "p4200",
        "p5000",
        "p5200",
        "p6000",
        "1060",
        "1050",
        "p40",
        "p100",
        "p6",
        "p4",
    ]
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

    if fp16_works or manual_cast:
        free_model_memory = get_free_memory() * 0.9 - minimum_inference_memory()
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
            return True

    if props.major < 7:
        return False

    nvidia_16_series = [
        "1660",
        "1650",
        "1630",
        "T500",
        "T550",
        "T600",
        "MX550",
        "MX450",
        "CMP 30HX",
        "T2000",
        "T1000",
        "T1200",
    ]
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True


def should_use_bf16(

    device: torch.device = None, model_params: int = 0, prioritize_performance: bool = True, manual_cast: bool = False

) -> bool:
    """#### Determine if BF16 should be used.



    #### Args:

        - `device` (torch.device, optional): The device to check. Defaults to None.

        - `model_params` (int, optional): The number of model parameters. Defaults to 0.

        - `prioritize_performance` (bool, optional): Whether to prioritize performance. Defaults to True.

        - `manual_cast` (bool, optional): Whether to manually cast. Defaults to False.



    #### Returns:

        - `bool`: True if BF16 should be used, False otherwise.

    """
    if device is not None:
        if is_device_cpu(device):
            return False

    if device is not None:
        if is_device_mps(device):
            return False

    if FORCE_FP32:
        return False

    if directml_enabled:
        return False

    if cpu_mode() or mps_mode():
        return False

    if is_intel_xpu():
        return True

    if device is None:
        device = torch.device("cuda")

    props = torch.cuda.get_device_properties(device)
    if props.major >= 8:
        return True

    bf16_works = torch.cuda.is_bf16_supported()

    if bf16_works or manual_cast:
        free_model_memory = get_free_memory() * 0.9 - minimum_inference_memory()
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
            return True

    return False


def soft_empty_cache(force: bool = False) -> None:
    """#### Softly empty the cache.



    #### Args:

        - `force` (bool, optional): Whether to force emptying the cache. Defaults to False.

    """
    global cpu_state
    if cpu_state == CPUState.MPS:
        torch.mps.empty_cache()
    elif is_intel_xpu():
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
        if (
            force or is_nvidia()
        ):  # This seems to make things worse on ROCm so I only do it for cuda
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()


def unload_all_models() -> None:
    """#### Unload all models."""
    free_memory(1e30, get_torch_device())


def resolve_lowvram_weight(weight: torch.Tensor, model: torch.nn.Module, key: str) -> torch.Tensor:
    """#### Resolve low VRAM weight.



    #### Args:

        - `weight` (torch.Tensor): The weight tensor.

        - `model` (torch.nn.Module): The model.

        - `key` (str): The key.



    #### Returns:

        - `torch.Tensor`: The resolved weight tensor.

    """
    return weight