File size: 7,388 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import numpy as np
import torch
from PIL import Image
import torchvision

from modules.Device import Device


def _tensor_check_image(image: torch.Tensor) -> None:
    """#### Check if the input is a valid tensor image.



    #### Args:

        - `image` (torch.Tensor): The input tensor image.

    """
    return


def tensor2pil(image: torch.Tensor) -> Image.Image:
    """#### Convert a tensor to a PIL image.



    #### Args:

        - `image` (torch.Tensor): The input tensor.



    #### Returns:

        - `Image.Image`: The converted PIL image.

    """
    _tensor_check_image(image)
    return Image.fromarray(
        np.clip(255.0 * image.cpu().numpy().squeeze(0), 0, 255).astype(np.uint8)
    )


def general_tensor_resize(image: torch.Tensor, w: int, h: int) -> torch.Tensor:
    """#### Resize a tensor image using bilinear interpolation.



    #### Args:

        - `image` (torch.Tensor): The input tensor image.

        - `w` (int): The target width.

        - `h` (int): The target height.



    #### Returns:

        - `torch.Tensor`: The resized tensor image.

    """
    _tensor_check_image(image)
    image = image.permute(0, 3, 1, 2)
    image = torch.nn.functional.interpolate(image, size=(h, w), mode="bilinear")
    image = image.permute(0, 2, 3, 1)
    return image


def pil2tensor(image: Image.Image) -> torch.Tensor:
    """#### Convert a PIL image to a tensor.



    #### Args:

        - `image` (Image.Image): The input PIL image.



    #### Returns:

        - `torch.Tensor`: The converted tensor.

    """
    return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)


class TensorBatchBuilder:
    """#### Class for building a batch of tensors."""

    def __init__(self):
        self.tensor: torch.Tensor | None = None

    def concat(self, new_tensor: torch.Tensor) -> None:
        """#### Concatenate a new tensor to the batch.



        #### Args:

            - `new_tensor` (torch.Tensor): The new tensor to concatenate.

        """
        self.tensor = new_tensor


LANCZOS = Image.Resampling.LANCZOS if hasattr(Image, "Resampling") else Image.LANCZOS


def tensor_resize(image: torch.Tensor, w: int, h: int) -> torch.Tensor:
    """#### Resize a tensor image.



    #### Args:

        - `image` (torch.Tensor): The input tensor image.

        - `w` (int): The target width.

        - `h` (int): The target height.



    #### Returns:

        - `torch.Tensor`: The resized tensor image.

    """
    _tensor_check_image(image)
    if image.shape[3] >= 3:
        scaled_images = TensorBatchBuilder()
        for single_image in image:
            single_image = single_image.unsqueeze(0)
            single_pil = tensor2pil(single_image)
            scaled_pil = single_pil.resize((w, h), resample=LANCZOS)

            single_image = pil2tensor(scaled_pil)
            scaled_images.concat(single_image)

        return scaled_images.tensor
    else:
        return general_tensor_resize(image, w, h)


def tensor_paste(

    image1: torch.Tensor,

    image2: torch.Tensor,

    left_top: tuple[int, int],

    mask: torch.Tensor,

) -> None:
    """#### Paste one tensor image onto another using a mask.



    #### Args:

        - `image1` (torch.Tensor): The base tensor image.

        - `image2` (torch.Tensor): The tensor image to paste.

        - `left_top` (tuple[int, int]): The top-left corner where the image2 will be pasted.

        - `mask` (torch.Tensor): The mask tensor.

    """
    _tensor_check_image(image1)
    _tensor_check_image(image2)
    _tensor_check_mask(mask)

    x, y = left_top
    _, h1, w1, _ = image1.shape
    _, h2, w2, _ = image2.shape

    # calculate image patch size
    w = min(w1, x + w2) - x
    h = min(h1, y + h2) - y

    mask = mask[:, :h, :w, :]
    image1[:, y : y + h, x : x + w, :] = (1 - mask) * image1[
        :, y : y + h, x : x + w, :
    ] + mask * image2[:, :h, :w, :]
    return


def tensor_convert_rgba(image: torch.Tensor, prefer_copy: bool = True) -> torch.Tensor:
    """#### Convert a tensor image to RGBA format.



    #### Args:

        - `image` (torch.Tensor): The input tensor image.

        - `prefer_copy` (bool, optional): Whether to prefer copying the tensor. Defaults to True.



    #### Returns:

        - `torch.Tensor`: The converted RGBA tensor image.

    """
    _tensor_check_image(image)
    alpha = torch.ones((*image.shape[:-1], 1))
    return torch.cat((image, alpha), axis=-1)


def tensor_convert_rgb(image: torch.Tensor, prefer_copy: bool = True) -> torch.Tensor:
    """#### Convert a tensor image to RGB format.



    #### Args:

        - `image` (torch.Tensor): The input tensor image.

        - `prefer_copy` (bool, optional): Whether to prefer copying the tensor. Defaults to True.



    #### Returns:

        - `torch.Tensor`: The converted RGB tensor image.

    """
    _tensor_check_image(image)
    return image


def tensor_get_size(image: torch.Tensor) -> tuple[int, int]:
    """#### Get the size of a tensor image.



    #### Args:

        - `image` (torch.Tensor): The input tensor image.



    #### Returns:

        - `tuple[int, int]`: The width and height of the tensor image.

    """
    _tensor_check_image(image)
    _, h, w, _ = image.shape
    return (w, h)


def tensor_putalpha(image: torch.Tensor, mask: torch.Tensor) -> None:
    """#### Add an alpha channel to a tensor image using a mask.



    #### Args:

        - `image` (torch.Tensor): The input tensor image.

        - `mask` (torch.Tensor): The mask tensor.

    """
    _tensor_check_image(image)
    _tensor_check_mask(mask)
    image[..., -1] = mask[..., 0]


def _tensor_check_mask(mask: torch.Tensor) -> None:
    """#### Check if the input is a valid tensor mask.



    #### Args:

        - `mask` (torch.Tensor): The input tensor mask.

    """
    return


def tensor_gaussian_blur_mask(

    mask: torch.Tensor | np.ndarray, kernel_size: int, sigma: float = 10.0

) -> torch.Tensor:
    """#### Apply Gaussian blur to a tensor mask.



    #### Args:

        - `mask` (torch.Tensor | np.ndarray): The input tensor mask.

        - `kernel_size` (int): The size of the Gaussian kernel.

        - `sigma` (float, optional): The standard deviation of the Gaussian kernel. Defaults to 10.0.



    #### Returns:

        - `torch.Tensor`: The blurred tensor mask.

    """
    if isinstance(mask, np.ndarray):
        mask = torch.from_numpy(mask)

    if mask.ndim == 2:
        mask = mask[None, ..., None]

    _tensor_check_mask(mask)

    kernel_size = kernel_size * 2 + 1

    prev_device = mask.device
    device = Device.get_torch_device()
    mask.to(device)

    # apply gaussian blur
    mask = mask[:, None, ..., 0]
    blurred_mask = torchvision.transforms.GaussianBlur(
        kernel_size=kernel_size, sigma=sigma
    )(mask)
    blurred_mask = blurred_mask[:, 0, ..., None]

    blurred_mask.to(prev_device)

    return blurred_mask


def to_tensor(image: np.ndarray) -> torch.Tensor:
    """#### Convert a numpy array to a tensor.



    #### Args:

        - `image` (np.ndarray): The input numpy array.



    #### Returns:

        - `torch.Tensor`: The converted tensor.

    """
    return torch.from_numpy(image)