Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,388 Bytes
d9a2e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import numpy as np
import torch
from PIL import Image
import torchvision
from modules.Device import Device
def _tensor_check_image(image: torch.Tensor) -> None:
"""#### Check if the input is a valid tensor image.
#### Args:
- `image` (torch.Tensor): The input tensor image.
"""
return
def tensor2pil(image: torch.Tensor) -> Image.Image:
"""#### Convert a tensor to a PIL image.
#### Args:
- `image` (torch.Tensor): The input tensor.
#### Returns:
- `Image.Image`: The converted PIL image.
"""
_tensor_check_image(image)
return Image.fromarray(
np.clip(255.0 * image.cpu().numpy().squeeze(0), 0, 255).astype(np.uint8)
)
def general_tensor_resize(image: torch.Tensor, w: int, h: int) -> torch.Tensor:
"""#### Resize a tensor image using bilinear interpolation.
#### Args:
- `image` (torch.Tensor): The input tensor image.
- `w` (int): The target width.
- `h` (int): The target height.
#### Returns:
- `torch.Tensor`: The resized tensor image.
"""
_tensor_check_image(image)
image = image.permute(0, 3, 1, 2)
image = torch.nn.functional.interpolate(image, size=(h, w), mode="bilinear")
image = image.permute(0, 2, 3, 1)
return image
def pil2tensor(image: Image.Image) -> torch.Tensor:
"""#### Convert a PIL image to a tensor.
#### Args:
- `image` (Image.Image): The input PIL image.
#### Returns:
- `torch.Tensor`: The converted tensor.
"""
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
class TensorBatchBuilder:
"""#### Class for building a batch of tensors."""
def __init__(self):
self.tensor: torch.Tensor | None = None
def concat(self, new_tensor: torch.Tensor) -> None:
"""#### Concatenate a new tensor to the batch.
#### Args:
- `new_tensor` (torch.Tensor): The new tensor to concatenate.
"""
self.tensor = new_tensor
LANCZOS = Image.Resampling.LANCZOS if hasattr(Image, "Resampling") else Image.LANCZOS
def tensor_resize(image: torch.Tensor, w: int, h: int) -> torch.Tensor:
"""#### Resize a tensor image.
#### Args:
- `image` (torch.Tensor): The input tensor image.
- `w` (int): The target width.
- `h` (int): The target height.
#### Returns:
- `torch.Tensor`: The resized tensor image.
"""
_tensor_check_image(image)
if image.shape[3] >= 3:
scaled_images = TensorBatchBuilder()
for single_image in image:
single_image = single_image.unsqueeze(0)
single_pil = tensor2pil(single_image)
scaled_pil = single_pil.resize((w, h), resample=LANCZOS)
single_image = pil2tensor(scaled_pil)
scaled_images.concat(single_image)
return scaled_images.tensor
else:
return general_tensor_resize(image, w, h)
def tensor_paste(
image1: torch.Tensor,
image2: torch.Tensor,
left_top: tuple[int, int],
mask: torch.Tensor,
) -> None:
"""#### Paste one tensor image onto another using a mask.
#### Args:
- `image1` (torch.Tensor): The base tensor image.
- `image2` (torch.Tensor): The tensor image to paste.
- `left_top` (tuple[int, int]): The top-left corner where the image2 will be pasted.
- `mask` (torch.Tensor): The mask tensor.
"""
_tensor_check_image(image1)
_tensor_check_image(image2)
_tensor_check_mask(mask)
x, y = left_top
_, h1, w1, _ = image1.shape
_, h2, w2, _ = image2.shape
# calculate image patch size
w = min(w1, x + w2) - x
h = min(h1, y + h2) - y
mask = mask[:, :h, :w, :]
image1[:, y : y + h, x : x + w, :] = (1 - mask) * image1[
:, y : y + h, x : x + w, :
] + mask * image2[:, :h, :w, :]
return
def tensor_convert_rgba(image: torch.Tensor, prefer_copy: bool = True) -> torch.Tensor:
"""#### Convert a tensor image to RGBA format.
#### Args:
- `image` (torch.Tensor): The input tensor image.
- `prefer_copy` (bool, optional): Whether to prefer copying the tensor. Defaults to True.
#### Returns:
- `torch.Tensor`: The converted RGBA tensor image.
"""
_tensor_check_image(image)
alpha = torch.ones((*image.shape[:-1], 1))
return torch.cat((image, alpha), axis=-1)
def tensor_convert_rgb(image: torch.Tensor, prefer_copy: bool = True) -> torch.Tensor:
"""#### Convert a tensor image to RGB format.
#### Args:
- `image` (torch.Tensor): The input tensor image.
- `prefer_copy` (bool, optional): Whether to prefer copying the tensor. Defaults to True.
#### Returns:
- `torch.Tensor`: The converted RGB tensor image.
"""
_tensor_check_image(image)
return image
def tensor_get_size(image: torch.Tensor) -> tuple[int, int]:
"""#### Get the size of a tensor image.
#### Args:
- `image` (torch.Tensor): The input tensor image.
#### Returns:
- `tuple[int, int]`: The width and height of the tensor image.
"""
_tensor_check_image(image)
_, h, w, _ = image.shape
return (w, h)
def tensor_putalpha(image: torch.Tensor, mask: torch.Tensor) -> None:
"""#### Add an alpha channel to a tensor image using a mask.
#### Args:
- `image` (torch.Tensor): The input tensor image.
- `mask` (torch.Tensor): The mask tensor.
"""
_tensor_check_image(image)
_tensor_check_mask(mask)
image[..., -1] = mask[..., 0]
def _tensor_check_mask(mask: torch.Tensor) -> None:
"""#### Check if the input is a valid tensor mask.
#### Args:
- `mask` (torch.Tensor): The input tensor mask.
"""
return
def tensor_gaussian_blur_mask(
mask: torch.Tensor | np.ndarray, kernel_size: int, sigma: float = 10.0
) -> torch.Tensor:
"""#### Apply Gaussian blur to a tensor mask.
#### Args:
- `mask` (torch.Tensor | np.ndarray): The input tensor mask.
- `kernel_size` (int): The size of the Gaussian kernel.
- `sigma` (float, optional): The standard deviation of the Gaussian kernel. Defaults to 10.0.
#### Returns:
- `torch.Tensor`: The blurred tensor mask.
"""
if isinstance(mask, np.ndarray):
mask = torch.from_numpy(mask)
if mask.ndim == 2:
mask = mask[None, ..., None]
_tensor_check_mask(mask)
kernel_size = kernel_size * 2 + 1
prev_device = mask.device
device = Device.get_torch_device()
mask.to(device)
# apply gaussian blur
mask = mask[:, None, ..., 0]
blurred_mask = torchvision.transforms.GaussianBlur(
kernel_size=kernel_size, sigma=sigma
)(mask)
blurred_mask = blurred_mask[:, 0, ..., None]
blurred_mask.to(prev_device)
return blurred_mask
def to_tensor(image: np.ndarray) -> torch.Tensor:
"""#### Convert a numpy array to a tensor.
#### Args:
- `image` (np.ndarray): The input numpy array.
#### Returns:
- `torch.Tensor`: The converted tensor.
"""
return torch.from_numpy(image)
|