Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,771 Bytes
d9a2e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import os
import numpy as np
from segment_anything import SamPredictor, sam_model_registry
import torch
from modules.AutoDetailer import mask_util
from modules.Device import Device
def sam_predict(
predictor: SamPredictor, points: list, plabs: list, bbox: list, threshold: float
) -> list:
"""#### Predict masks using SAM.
#### Args:
- `predictor` (SamPredictor): The SAM predictor.
- `points` (list): List of points.
- `plabs` (list): List of point labels.
- `bbox` (list): Bounding box.
- `threshold` (float): Threshold for mask selection.
#### Returns:
- `list`: List of predicted masks.
"""
point_coords = None if not points else np.array(points)
point_labels = None if not plabs else np.array(plabs)
box = np.array([bbox]) if bbox is not None else None
cur_masks, scores, _ = predictor.predict(
point_coords=point_coords, point_labels=point_labels, box=box
)
total_masks = []
selected = False
max_score = 0
max_mask = None
for idx in range(len(scores)):
if scores[idx] > max_score:
max_score = scores[idx]
max_mask = cur_masks[idx]
if scores[idx] >= threshold:
selected = True
total_masks.append(cur_masks[idx])
else:
pass
if not selected and max_mask is not None:
total_masks.append(max_mask)
return total_masks
def is_same_device(a: torch.device, b: torch.device) -> bool:
"""#### Check if two devices are the same.
#### Args:
- `a` (torch.device): The first device.
- `b` (torch.device): The second device.
#### Returns:
- `bool`: Whether the devices are the same.
"""
a_device = torch.device(a) if isinstance(a, str) else a
b_device = torch.device(b) if isinstance(b, str) else b
return a_device.type == b_device.type and a_device.index == b_device.index
class SafeToGPU:
"""#### Class to safely move objects to GPU."""
def __init__(self, size: int):
self.size = size
def to_device(self, obj: torch.nn.Module, device: torch.device) -> None:
"""#### Move an object to a device.
#### Args:
- `obj` (torch.nn.Module): The object to move.
- `device` (torch.device): The target device.
"""
if is_same_device(device, "cpu"):
obj.to(device)
else:
if is_same_device(obj.device, "cpu"): # cpu to gpu
Device.free_memory(self.size * 1.3, device)
if Device.get_free_memory(device) > self.size * 1.3:
try:
obj.to(device)
except:
print(
f"WARN: The model is not moved to the '{device}' due to insufficient memory. [1]"
)
else:
print(
f"WARN: The model is not moved to the '{device}' due to insufficient memory. [2]"
)
class SAMWrapper:
"""#### Wrapper class for SAM model."""
def __init__(
self, model: torch.nn.Module, is_auto_mode: bool, safe_to_gpu: SafeToGPU = None
):
self.model = model
self.safe_to_gpu = safe_to_gpu if safe_to_gpu is not None else SafeToGPU()
self.is_auto_mode = is_auto_mode
def prepare_device(self) -> None:
"""#### Prepare the device for the model."""
if self.is_auto_mode:
device = Device.get_torch_device()
self.safe_to_gpu.to_device(self.model, device=device)
def release_device(self) -> None:
"""#### Release the device from the model."""
if self.is_auto_mode:
self.model.to(device="cpu")
def predict(
self, image: np.ndarray, points: list, plabs: list, bbox: list, threshold: float
) -> list:
"""#### Predict masks using the SAM model.
#### Args:
- `image` (np.ndarray): The input image.
- `points` (list): List of points.
- `plabs` (list): List of point labels.
- `bbox` (list): Bounding box.
- `threshold` (float): Threshold for mask selection.
#### Returns:
- `list`: List of predicted masks.
"""
predictor = SamPredictor(self.model)
predictor.set_image(image, "RGB")
return sam_predict(predictor, points, plabs, bbox, threshold)
class SAMLoader:
"""#### Class to load SAM models."""
def load_model(self, model_name: str, device_mode: str = "auto") -> tuple:
"""#### Load a SAM model.
#### Args:
- `model_name` (str): The name of the model.
- `device_mode` (str, optional): The device mode. Defaults to "auto".
#### Returns:
- `tuple`: The loaded SAM model.
"""
modelname = "./_internal/yolos/" + model_name
if "vit_h" in model_name:
model_kind = "vit_h"
elif "vit_l" in model_name:
model_kind = "vit_l"
else:
model_kind = "vit_b"
sam = sam_model_registry[model_kind](checkpoint=modelname)
size = os.path.getsize(modelname)
safe_to = SafeToGPU(size)
# Unless user explicitly wants to use CPU, we use GPU
device = Device.get_torch_device() if device_mode == "Prefer GPU" else "CPU"
if device_mode == "Prefer GPU":
safe_to.to_device(sam, device)
is_auto_mode = device_mode == "AUTO"
sam_obj = SAMWrapper(sam, is_auto_mode=is_auto_mode, safe_to_gpu=safe_to)
sam.sam_wrapper = sam_obj
print(f"Loads SAM model: {modelname} (device:{device_mode})")
return (sam,)
def make_sam_mask(
sam: SAMWrapper,
segs: tuple,
image: torch.Tensor,
detection_hint: bool,
dilation: int,
threshold: float,
bbox_expansion: int,
mask_hint_threshold: float,
mask_hint_use_negative: bool,
) -> torch.Tensor:
"""#### Create a SAM mask.
#### Args:
- `sam` (SAMWrapper): The SAM wrapper.
- `segs` (tuple): Segmentation information.
- `image` (torch.Tensor): The input image.
- `detection_hint` (bool): Whether to use detection hint.
- `dilation` (int): Dilation value.
- `threshold` (float): Threshold for mask selection.
- `bbox_expansion` (int): Bounding box expansion value.
- `mask_hint_threshold` (float): Mask hint threshold.
- `mask_hint_use_negative` (bool): Whether to use negative mask hint.
#### Returns:
- `torch.Tensor`: The created SAM mask.
"""
sam_obj = sam.sam_wrapper
sam_obj.prepare_device()
try:
image = np.clip(255.0 * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)
total_masks = []
# seg_shape = segs[0]
segs = segs[1]
for i in range(len(segs)):
bbox = segs[i].bbox
center = mask_util.center_of_bbox(bbox)
x1 = max(bbox[0] - bbox_expansion, 0)
y1 = max(bbox[1] - bbox_expansion, 0)
x2 = min(bbox[2] + bbox_expansion, image.shape[1])
y2 = min(bbox[3] + bbox_expansion, image.shape[0])
dilated_bbox = [x1, y1, x2, y2]
points = []
plabs = []
points.append(center)
plabs = [1] # 1 = foreground point, 0 = background point
detected_masks = sam_obj.predict(
image, points, plabs, dilated_bbox, threshold
)
total_masks += detected_masks
# merge every collected masks
mask = mask_util.combine_masks2(total_masks)
finally:
sam_obj.release_device()
if mask is not None:
mask = mask.float()
mask = mask_util.dilate_mask(mask.cpu().numpy(), dilation)
mask = torch.from_numpy(mask)
mask = mask_util.make_3d_mask(mask)
return mask
else:
return None
class SAMDetectorCombined:
"""#### Class to combine SAM detection."""
def doit(
self,
sam_model: SAMWrapper,
segs: tuple,
image: torch.Tensor,
detection_hint: bool,
dilation: int,
threshold: float,
bbox_expansion: int,
mask_hint_threshold: float,
mask_hint_use_negative: bool,
) -> tuple:
"""#### Combine SAM detection.
#### Args:
- `sam_model` (SAMWrapper): The SAM wrapper.
- `segs` (tuple): Segmentation information.
- `image` (torch.Tensor): The input image.
- `detection_hint` (bool): Whether to use detection hint.
- `dilation` (int): Dilation value.
- `threshold` (float): Threshold for mask selection.
- `bbox_expansion` (int): Bounding box expansion value.
- `mask_hint_threshold` (float): Mask hint threshold.
- `mask_hint_use_negative` (bool): Whether to use negative mask hint.
#### Returns:
- `tuple`: The combined SAM detection result.
"""
sam = make_sam_mask(
sam_model,
segs,
image,
detection_hint,
dilation,
threshold,
bbox_expansion,
mask_hint_threshold,
mask_hint_use_negative,
)
if sam is not None:
return (sam,)
else:
return None
|