Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,952 Bytes
d9a2e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
from typing import List
import cv2
import numpy as np
import torch
from ultralytics import YOLO
from PIL import Image
orig_torch_load = torch.load
# importing YOLO breaking original torch.load capabilities
torch.load = orig_torch_load
def load_yolo(model_path: str) -> YOLO:
"""#### Load YOLO model.
#### Args:
- `model_path` (str): The path to the YOLO model.
#### Returns:
- `YOLO`: The YOLO model initialized with the specified model path.
"""
try:
return YOLO(model_path)
except ModuleNotFoundError:
print("please download yolo model")
def inference_bbox(
model: YOLO,
image: Image.Image,
confidence: float = 0.3,
device: str = "",
) -> List:
"""#### Perform inference on an image and return bounding boxes.
#### Args:
- `model` (YOLO): The YOLO model.
- `image` (Image.Image): The image to perform inference on.
- `confidence` (float): The confidence threshold for the bounding boxes.
- `device` (str): The device to run the model on.
#### Returns:
- `List[List[str, List[int], np.ndarray, float]]`: The list of bounding boxes.
"""
pred = model(image, conf=confidence, device=device)
bboxes = pred[0].boxes.xyxy.cpu().numpy()
cv2_image = np.array(image)
cv2_image = cv2_image[:, :, ::-1].copy() # Convert RGB to BGR for cv2 processing
cv2_gray = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2GRAY)
segms = []
for x0, y0, x1, y1 in bboxes:
cv2_mask = np.zeros(cv2_gray.shape, np.uint8)
cv2.rectangle(cv2_mask, (int(x0), int(y0)), (int(x1), int(y1)), 255, -1)
cv2_mask_bool = cv2_mask.astype(bool)
segms.append(cv2_mask_bool)
results = [[], [], [], []]
for i in range(len(bboxes)):
results[0].append(pred[0].names[int(pred[0].boxes[i].cls.item())])
results[1].append(bboxes[i])
results[2].append(segms[i])
results[3].append(pred[0].boxes[i].conf.cpu().numpy())
return results
def create_segmasks(results: List) -> List:
"""#### Create segmentation masks from the results of the inference.
#### Args:
- `results` (List[List[str, List[int], np.ndarray, float]]): The results of the inference.
#### Returns:
- `List[List[int], np.ndarray, float]`: The list of segmentation masks.
"""
bboxs = results[1]
segms = results[2]
confidence = results[3]
results = []
for i in range(len(segms)):
item = (bboxs[i], segms[i].astype(np.float32), confidence[i])
results.append(item)
return results
def dilate_masks(segmasks: List, dilation_factor: int, iter: int = 1) -> List:
"""#### Dilate the segmentation masks.
#### Args:
- `segmasks` (List[List[int], np.ndarray, float]): The segmentation masks.
- `dilation_factor` (int): The dilation factor.
- `iter` (int): The number of iterations.
#### Returns:
- `List[List[int], np.ndarray, float]`: The dilated segmentation masks.
"""
dilated_masks = []
kernel = np.ones((abs(dilation_factor), abs(dilation_factor)), np.uint8)
for i in range(len(segmasks)):
cv2_mask = segmasks[i][1]
dilated_mask = cv2.dilate(cv2_mask, kernel, iter)
item = (segmasks[i][0], dilated_mask, segmasks[i][2])
dilated_masks.append(item)
return dilated_masks
def normalize_region(limit: int, startp: int, size: int) -> List:
"""#### Normalize the region.
#### Args:
- `limit` (int): The limit.
- `startp` (int): The start point.
- `size` (int): The size.
#### Returns:
- `List[int]`: The normalized start and end points.
"""
if startp < 0:
new_endp = min(limit, size)
new_startp = 0
elif startp + size > limit:
new_startp = max(0, limit - size)
new_endp = limit
else:
new_startp = startp
new_endp = min(limit, startp + size)
return int(new_startp), int(new_endp)
def make_crop_region(w: int, h: int, bbox: List, crop_factor: float) -> List:
"""#### Make the crop region.
#### Args:
- `w` (int): The width.
- `h` (int): The height.
- `bbox` (List[int]): The bounding box.
- `crop_factor` (float): The crop factor.
#### Returns:
- `List[x1: int, y1: int, x2: int, y2: int]`: The crop region.
"""
x1 = bbox[0]
y1 = bbox[1]
x2 = bbox[2]
y2 = bbox[3]
bbox_w = x2 - x1
bbox_h = y2 - y1
crop_w = bbox_w * crop_factor
crop_h = bbox_h * crop_factor
kernel_x = x1 + bbox_w / 2
kernel_y = y1 + bbox_h / 2
new_x1 = int(kernel_x - crop_w / 2)
new_y1 = int(kernel_y - crop_h / 2)
# make sure position in (w,h)
new_x1, new_x2 = normalize_region(w, new_x1, crop_w)
new_y1, new_y2 = normalize_region(h, new_y1, crop_h)
return [new_x1, new_y1, new_x2, new_y2]
def crop_ndarray2(npimg: np.ndarray, crop_region: List) -> np.ndarray:
"""#### Crop the ndarray in 2 dimensions.
#### Args:
- `npimg` (np.ndarray): The ndarray to crop.
- `crop_region` (List[int]): The crop region.
#### Returns:
- `np.ndarray`: The cropped ndarray.
"""
x1 = crop_region[0]
y1 = crop_region[1]
x2 = crop_region[2]
y2 = crop_region[3]
cropped = npimg[y1:y2, x1:x2]
return cropped
def crop_ndarray4(npimg: np.ndarray, crop_region: List) -> np.ndarray:
"""#### Crop the ndarray in 4 dimensions.
#### Args:
- `npimg` (np.ndarray): The ndarray to crop.
- `crop_region` (List[int]): The crop region.
#### Returns:
- `np.ndarray`: The cropped ndarray.
"""
x1 = crop_region[0]
y1 = crop_region[1]
x2 = crop_region[2]
y2 = crop_region[3]
cropped = npimg[:, y1:y2, x1:x2, :]
return cropped
def crop_image(image: Image.Image, crop_region: List) -> Image.Image:
"""#### Crop the image.
#### Args:
- `image` (Image.Image): The image to crop.
- `crop_region` (List[int]): The crop region.
#### Returns:
- `Image.Image`: The cropped image.
"""
return crop_ndarray4(image, crop_region)
def segs_scale_match(segs: List[np.ndarray], target_shape: List) -> List:
"""#### Match the scale of the segmentation masks.
#### Args:
- `segs` (List[np.ndarray]): The segmentation masks.
- `target_shape` (List[int]): The target shape.
#### Returns:
- `List[np.ndarray]`: The matched segmentation masks.
"""
h = segs[0][0]
w = segs[0][1]
th = target_shape[1]
tw = target_shape[2]
if (h == th and w == tw) or h == 0 or w == 0:
return segs
|