File size: 6,952 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from typing import List
import cv2
import numpy as np
import torch
from ultralytics import YOLO
from PIL import Image

orig_torch_load = torch.load

# importing YOLO breaking original torch.load capabilities
torch.load = orig_torch_load


def load_yolo(model_path: str) -> YOLO:
    """#### Load YOLO model.



    #### Args:

        - `model_path` (str): The path to the YOLO model.



    #### Returns:

        - `YOLO`: The YOLO model initialized with the specified model path.

    """
    try:
        return YOLO(model_path)
    except ModuleNotFoundError:
        print("please download yolo model")


def inference_bbox(

    model: YOLO,

    image: Image.Image,

    confidence: float = 0.3,

    device: str = "",

) -> List:
    """#### Perform inference on an image and return bounding boxes.



    #### Args:

        - `model` (YOLO): The YOLO model.

        - `image` (Image.Image): The image to perform inference on.

        - `confidence` (float): The confidence threshold for the bounding boxes.

        - `device` (str): The device to run the model on.



    #### Returns:

        - `List[List[str, List[int], np.ndarray, float]]`: The list of bounding boxes.

    """
    pred = model(image, conf=confidence, device=device)

    bboxes = pred[0].boxes.xyxy.cpu().numpy()
    cv2_image = np.array(image)
    cv2_image = cv2_image[:, :, ::-1].copy()  # Convert RGB to BGR for cv2 processing
    cv2_gray = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2GRAY)

    segms = []
    for x0, y0, x1, y1 in bboxes:
        cv2_mask = np.zeros(cv2_gray.shape, np.uint8)
        cv2.rectangle(cv2_mask, (int(x0), int(y0)), (int(x1), int(y1)), 255, -1)
        cv2_mask_bool = cv2_mask.astype(bool)
        segms.append(cv2_mask_bool)

    results = [[], [], [], []]
    for i in range(len(bboxes)):
        results[0].append(pred[0].names[int(pred[0].boxes[i].cls.item())])
        results[1].append(bboxes[i])
        results[2].append(segms[i])
        results[3].append(pred[0].boxes[i].conf.cpu().numpy())

    return results


def create_segmasks(results: List) -> List:
    """#### Create segmentation masks from the results of the inference.



    #### Args:

        - `results` (List[List[str, List[int], np.ndarray, float]]): The results of the inference.



    #### Returns:

        - `List[List[int], np.ndarray, float]`: The list of segmentation masks.

    """
    bboxs = results[1]
    segms = results[2]
    confidence = results[3]

    results = []
    for i in range(len(segms)):
        item = (bboxs[i], segms[i].astype(np.float32), confidence[i])
        results.append(item)
    return results


def dilate_masks(segmasks: List, dilation_factor: int, iter: int = 1) -> List:
    """#### Dilate the segmentation masks.



    #### Args:

        - `segmasks` (List[List[int], np.ndarray, float]): The segmentation masks.

        - `dilation_factor` (int): The dilation factor.

        - `iter` (int): The number of iterations.



    #### Returns:

        - `List[List[int], np.ndarray, float]`: The dilated segmentation masks.

    """
    dilated_masks = []
    kernel = np.ones((abs(dilation_factor), abs(dilation_factor)), np.uint8)

    for i in range(len(segmasks)):
        cv2_mask = segmasks[i][1]

        dilated_mask = cv2.dilate(cv2_mask, kernel, iter)

        item = (segmasks[i][0], dilated_mask, segmasks[i][2])
        dilated_masks.append(item)

    return dilated_masks


def normalize_region(limit: int, startp: int, size: int) -> List:
    """#### Normalize the region.



    #### Args:

        - `limit` (int): The limit.

        - `startp` (int): The start point.

        - `size` (int): The size.



    #### Returns:

        - `List[int]`: The normalized start and end points.

    """
    if startp < 0:
        new_endp = min(limit, size)
        new_startp = 0
    elif startp + size > limit:
        new_startp = max(0, limit - size)
        new_endp = limit
    else:
        new_startp = startp
        new_endp = min(limit, startp + size)

    return int(new_startp), int(new_endp)


def make_crop_region(w: int, h: int, bbox: List, crop_factor: float) -> List:
    """#### Make the crop region.



    #### Args:

        - `w` (int): The width.

        - `h` (int): The height.

        - `bbox` (List[int]): The bounding box.

        - `crop_factor` (float): The crop factor.



    #### Returns:

        - `List[x1: int, y1: int, x2: int, y2: int]`: The crop region.

    """
    x1 = bbox[0]
    y1 = bbox[1]
    x2 = bbox[2]
    y2 = bbox[3]

    bbox_w = x2 - x1
    bbox_h = y2 - y1

    crop_w = bbox_w * crop_factor
    crop_h = bbox_h * crop_factor

    kernel_x = x1 + bbox_w / 2
    kernel_y = y1 + bbox_h / 2

    new_x1 = int(kernel_x - crop_w / 2)
    new_y1 = int(kernel_y - crop_h / 2)

    # make sure position in (w,h)
    new_x1, new_x2 = normalize_region(w, new_x1, crop_w)
    new_y1, new_y2 = normalize_region(h, new_y1, crop_h)

    return [new_x1, new_y1, new_x2, new_y2]


def crop_ndarray2(npimg: np.ndarray, crop_region: List) -> np.ndarray:
    """#### Crop the ndarray in 2 dimensions.



    #### Args:

        - `npimg` (np.ndarray): The ndarray to crop.

        - `crop_region` (List[int]): The crop region.



    #### Returns:

        - `np.ndarray`: The cropped ndarray.

    """
    x1 = crop_region[0]
    y1 = crop_region[1]
    x2 = crop_region[2]
    y2 = crop_region[3]

    cropped = npimg[y1:y2, x1:x2]

    return cropped


def crop_ndarray4(npimg: np.ndarray, crop_region: List) -> np.ndarray:
    """#### Crop the ndarray in 4 dimensions.



    #### Args:

        - `npimg` (np.ndarray): The ndarray to crop.

        - `crop_region` (List[int]): The crop region.



    #### Returns:

        - `np.ndarray`: The cropped ndarray.

    """
    x1 = crop_region[0]
    y1 = crop_region[1]
    x2 = crop_region[2]
    y2 = crop_region[3]

    cropped = npimg[:, y1:y2, x1:x2, :]

    return cropped


def crop_image(image: Image.Image, crop_region: List) -> Image.Image:
    """#### Crop the image.



    #### Args:

        - `image` (Image.Image): The image to crop.

        - `crop_region` (List[int]): The crop region.



    #### Returns:

        - `Image.Image`: The cropped image.

    """
    return crop_ndarray4(image, crop_region)


def segs_scale_match(segs: List[np.ndarray], target_shape: List) -> List:
    """#### Match the scale of the segmentation masks.



    #### Args:

        - `segs` (List[np.ndarray]): The segmentation masks.

        - `target_shape` (List[int]): The target shape.



    #### Returns:

        - `List[np.ndarray]`: The matched segmentation masks.

    """
    h = segs[0][0]
    w = segs[0][1]

    th = target_shape[1]
    tw = target_shape[2]

    if (h == th and w == tw) or h == 0 or w == 0:
        return segs