File size: 14,712 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
 
d9a2e19
cfe609e
 
 
 
 
 
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
 
 
d9a2e19
 
 
 
 
cfe609e
 
 
 
 
 
 
 
 
 
 
 
d9a2e19
 
 
 
 
 
 
 
cfe609e
d9a2e19
cfe609e
 
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
d9a2e19
cfe609e
 
d9a2e19
cfe609e
d9a2e19
cfe609e
 
 
 
 
 
 
d9a2e19
cfe609e
 
 
 
d9a2e19
cfe609e
 
 
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import threading
import torch
from tqdm.auto import trange
from modules.Utilities import util


from modules.sample import sampling_util

disable_gui = False


@torch.no_grad()
def sample_euler_ancestral(

    model,

    x,

    sigmas,

    extra_args=None,

    callback=None,

    disable=None,

    eta=1.0,

    s_noise=1.0,

    noise_sampler=None,

    pipeline=False,

):
    # Pre-calculate common values
    device = x.device
    global disable_gui
    disable_gui = pipeline

    if not disable_gui:
        from modules.AutoEncoders import taesd
        from modules.user import app_instance

    # Pre-allocate tensors and init noise sampler
    s_in = torch.ones((x.shape[0],), device=device)
    noise_sampler = (
        sampling_util.default_noise_sampler(x)
        if noise_sampler is None
        else noise_sampler
    )

    for i in trange(len(sigmas) - 1, disable=disable):
        if (
            not pipeline
            and hasattr(app_instance.app, "interrupt_flag")
            and app_instance.app.interrupt_flag
        ):
            return x

        if not pipeline:
            app_instance.app.progress.set(i / (len(sigmas) - 1))

        # Combined model inference and step calculation
        denoised = model(x, sigmas[i] * s_in, **(extra_args or {}))
        sigma_down, sigma_up = sampling_util.get_ancestral_step(
            sigmas[i], sigmas[i + 1], eta=eta
        )

        # Fused update step
        x = x + util.to_d(x, sigmas[i], denoised) * (sigma_down - sigmas[i])
        if sigmas[i + 1] > 0:
            x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up

        if callback is not None:
            callback({"x": x, "i": i, "sigma": sigmas[i], "denoised": denoised})

        if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0:
            threading.Thread(target=taesd.taesd_preview, args=(x,)).start()

    return x


@torch.no_grad()
def sample_euler(

    model,

    x,

    sigmas,

    extra_args=None,

    callback=None,

    disable=None,

    s_churn=0.0,

    s_tmin=0.0,

    s_tmax=float("inf"),

    s_noise=1.0,

    pipeline=False,

):
    # Pre-calculate common values
    device = x.device
    global disable_gui
    disable_gui = pipeline

    if not disable_gui:
        from modules.AutoEncoders import taesd
        from modules.user import app_instance

    # Pre-allocate tensors and cache parameters
    s_in = torch.ones((x.shape[0],), device=device)
    gamma_max = min(s_churn / (len(sigmas) - 1), 2**0.5 - 1) if s_churn > 0 else 0

    for i in trange(len(sigmas) - 1, disable=disable):
        if (
            not pipeline
            and hasattr(app_instance.app, "interrupt_flag")
            and app_instance.app.interrupt_flag
        ):
            return x

        if not pipeline:
            app_instance.app.progress.set(i / (len(sigmas) - 1))

        # Combined sigma calculation and update
        sigma_hat = (
            sigmas[i] * (1 + (gamma_max if s_tmin <= sigmas[i] <= s_tmax else 0))
            if gamma_max > 0
            else sigmas[i]
        )

        if gamma_max > 0 and sigma_hat > sigmas[i]:
            x = (
                x
                + torch.randn_like(x) * s_noise * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
            )

        # Fused model inference and update step
        denoised = model(x, sigma_hat * s_in, **(extra_args or {}))
        x = x + util.to_d(x, sigma_hat, denoised) * (sigmas[i + 1] - sigma_hat)

        if callback is not None:
            callback(
                {
                    "x": x,
                    "i": i,
                    "sigma": sigmas[i],
                    "sigma_hat": sigma_hat,
                    "denoised": denoised,
                }
            )

        if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0:
            threading.Thread(target=taesd.taesd_preview, args=(x, True)).start()

    return x


def set_model_options_post_cfg_function(

    model_options, post_cfg_function, disable_cfg1_optimization=False

):
    model_options["sampler_post_cfg_function"] = model_options.get(
        "sampler_post_cfg_function", []
    ) + [post_cfg_function]
    if disable_cfg1_optimization:
        model_options["disable_cfg1_optimization"] = True
    return model_options


@torch.no_grad()
def sample_dpmpp_2m_cfgpp(

    model,

    x,

    sigmas,

    extra_args=None,

    callback=None,

    disable=None,

    pipeline=False,

    # CFG++ parameters

    cfg_scale=7.5,

    cfg_x0_scale=1.0,

    cfg_s_scale=1.0,

    cfg_min=1.0,

):
    """DPM-Solver++(2M) sampler with CFG++ optimizations"""
    # Pre-calculate common values and setup
    device = x.device
    global disable_gui
    disable_gui = pipeline

    if not disable_gui:
        from modules.AutoEncoders import taesd
        from modules.user import app_instance

    # Pre-allocate tensors and transform sigmas
    s_in = torch.ones((x.shape[0],), device=device)
    t_steps = -torch.log(sigmas)  # Fused calculation
    n_steps = len(sigmas) - 1

    # Pre-calculate all needed values in one go
    sigma_steps = torch.exp(-t_steps)  # Fused calculation
    ratios = sigma_steps[1:] / sigma_steps[:-1]
    h_steps = t_steps[1:] - t_steps[:-1]

    # Pre-calculate CFG schedule for the entire sampling process
    steps = torch.arange(n_steps, device=device)
    cfg_values = cfg_scale + (cfg_min - cfg_scale) * (steps / n_steps)

    old_denoised = None
    old_uncond_denoised = None
    extra_args = {} if extra_args is None else extra_args

    # Define post-CFG function once outside the loop
    def post_cfg_function(args):
        nonlocal old_uncond_denoised
        old_uncond_denoised = args["uncond_denoised"]
        return args["denoised"]

    model_options = extra_args.get("model_options", {}).copy()
    extra_args["model_options"] = set_model_options_post_cfg_function(
        model_options, post_cfg_function, disable_cfg1_optimization=True
    )

    for i in trange(n_steps, disable=disable):
        if (
            not pipeline
            and hasattr(app_instance.app, "interrupt_flag")
            and app_instance.app.interrupt_flag
        ):
            return x

        if not pipeline:
            app_instance.app.progress.set(i / n_steps)

        # Use pre-calculated CFG scale
        current_cfg = cfg_values[i]

        # Fused model inference and update calculations
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        uncond_denoised = extra_args.get("model_options", {}).get(
            "sampler_post_cfg_function", []
        )[-1]({"denoised": denoised, "uncond_denoised": None})

        if callback is not None:
            callback(
                {
                    "x": x,
                    "i": i,
                    "sigma": sigmas[i],
                    "sigma_hat": sigmas[i],
                    "denoised": denoised,
                    "cfg_scale": current_cfg,
                }
            )

        # CFG++ update step using optimized operations
        if old_uncond_denoised is None or sigmas[i + 1] == 0:
            # First step or last step - use torch.lerp for efficient interpolation
            cfg_denoised = torch.lerp(uncond_denoised, denoised, current_cfg)
        else:
            # Fused momentum calculations
            h_ratio = h_steps[i - 1] / (2 * h_steps[i])
            h_ratio_plus_1 = 1 + h_ratio

            # Use fused multiply-add operations for momentum terms
            momentum = torch.addcmul(denoised * h_ratio_plus_1, old_denoised, -h_ratio)
            uncond_momentum = torch.addcmul(
                uncond_denoised * h_ratio_plus_1, old_uncond_denoised, -h_ratio
            )

            # Optimized interpolation for CFG++ update
            cfg_denoised = torch.lerp(
                uncond_momentum, momentum, current_cfg * cfg_x0_scale
            )

        # Apply update with pre-calculated expm1
        h_expm1 = torch.expm1(-h_steps[i])
        x = ratios[i] * x - h_expm1 * cfg_denoised

        old_denoised = denoised
        old_uncond_denoised = uncond_denoised

        # Preview updates
        if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0:
            threading.Thread(target=taesd.taesd_preview, args=(x,)).start()

    return x


@torch.no_grad()
def sample_dpmpp_sde_cfgpp(

    model,

    x,

    sigmas,

    extra_args=None,

    callback=None,

    disable=None,

    eta=1.0,

    s_noise=1.0,

    noise_sampler=None,

    r=1 / 2,

    pipeline=False,

    seed=None,

    # CFG++ parameters

    cfg_scale=7.5,

    cfg_x0_scale=1.0,

    cfg_s_scale=1.0,

    cfg_min=1.0,

):
    """DPM-Solver++ (SDE) with CFG++ optimizations"""
    # Pre-calculate common values
    device = x.device
    global disable_gui
    disable_gui = pipeline

    if not disable_gui:
        from modules.AutoEncoders import taesd
        from modules.user import app_instance

    # Early return check
    if len(sigmas) <= 1:
        return x

    # Pre-allocate tensors and values
    s_in = torch.ones((x.shape[0],), device=device)
    n_steps = len(sigmas) - 1
    extra_args = {} if extra_args is None else extra_args

    # CFG++ scheduling
    def get_cfg_scale(step):
        progress = step / n_steps
        return cfg_scale + (cfg_min - cfg_scale) * progress

    # Helper functions
    def sigma_fn(t):
        return (-t).exp()

    def t_fn(sigma):
        return -sigma.log()

    # Initialize noise sampler
    if noise_sampler is None:
        noise_sampler = sampling_util.BrownianTreeNoiseSampler(
            x, sigmas[sigmas > 0].min(), sigmas.max(), seed=seed, cpu=True
        )

    # Track previous predictions
    old_denoised = None
    old_uncond_denoised = None

    def post_cfg_function(args):
        nonlocal old_uncond_denoised
        old_uncond_denoised = args["uncond_denoised"]
        return args["denoised"]

    model_options = extra_args.get("model_options", {}).copy()
    extra_args["model_options"] = set_model_options_post_cfg_function(
        model_options, post_cfg_function, disable_cfg1_optimization=True
    )

    for i in trange(n_steps, disable=disable):
        if (
            not pipeline
            and hasattr(app_instance.app, "interrupt_flag")
            and app_instance.app.interrupt_flag
        ):
            return x

        if not pipeline:
            app_instance.app.progress.set(i / n_steps)

        # Get current CFG scale
        current_cfg = get_cfg_scale(i)

        # Model inference
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        uncond_denoised = extra_args.get("model_options", {}).get(
            "sampler_post_cfg_function", []
        )[-1]({"denoised": denoised, "uncond_denoised": None})

        if callback is not None:
            callback(
                {
                    "x": x,
                    "i": i,
                    "sigma": sigmas[i],
                    "denoised": denoised,
                    "cfg_scale": current_cfg,
                }
            )

        if sigmas[i + 1] == 0:
            # Final step - regular CFG
            cfg_denoised = uncond_denoised + (denoised - uncond_denoised) * current_cfg
            x = x + util.to_d(x, sigmas[i], cfg_denoised) * (sigmas[i + 1] - sigmas[i])
        else:
            # Two-step update with CFG++
            t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
            s = t + (t_next - t) * r

            # Step 1 with CFG++
            sd, su = sampling_util.get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
            s_ = t_fn(sd)

            if old_uncond_denoised is None:
                # First step - regular CFG
                cfg_denoised = (
                    uncond_denoised + (denoised - uncond_denoised) * current_cfg
                )
            else:
                # CFG++ with momentum
                x0_coeff = cfg_x0_scale * current_cfg

                # Calculate momentum terms
                h_ratio = (t - s_) / (2 * (t - t_next))
                momentum = (1 + h_ratio) * denoised - h_ratio * old_denoised
                uncond_momentum = (
                    1 + h_ratio
                ) * uncond_denoised - h_ratio * old_uncond_denoised

                # Combine with CFG++ scaling
                cfg_denoised = uncond_momentum + (momentum - uncond_momentum) * x0_coeff

            x_2 = (
                (sigma_fn(s_) / sigma_fn(t)) * x
                - (t - s_).expm1() * cfg_denoised
                + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
            )

            # Step 2 inference
            denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
            uncond_denoised_2 = extra_args.get("model_options", {}).get(
                "sampler_post_cfg_function", []
            )[-1]({"denoised": denoised_2, "uncond_denoised": None})

            # Step 2 CFG++ combination
            if old_uncond_denoised is None:
                cfg_denoised_2 = (
                    uncond_denoised_2 + (denoised_2 - uncond_denoised_2) * current_cfg
                )
            else:
                momentum_2 = (1 + h_ratio) * denoised_2 - h_ratio * denoised
                uncond_momentum_2 = (
                    1 + h_ratio
                ) * uncond_denoised_2 - h_ratio * uncond_denoised
                cfg_denoised_2 = (
                    uncond_momentum_2 + (momentum_2 - uncond_momentum_2) * x0_coeff
                )

            # Final ancestral step
            sd, su = sampling_util.get_ancestral_step(
                sigma_fn(t), sigma_fn(t_next), eta
            )
            t_next_ = t_fn(sd)

            # Combined update with both predictions
            x = (
                (sigma_fn(t_next_) / sigma_fn(t)) * x
                - (t - t_next_).expm1()
                * ((1 - 1 / (2 * r)) * cfg_denoised + (1 / (2 * r)) * cfg_denoised_2)
                + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
            )

        old_denoised = denoised
        old_uncond_denoised = uncond_denoised

        # Preview updates
        if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0:
            threading.Thread(target=taesd.taesd_preview, args=(x,)).start()

    return x