Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,994 Bytes
1d117d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import logging
import math
import threading
import torch
import torchsde
from torch import nn
from modules.Utilities import util
disable_gui = False
logging_level = logging.INFO
logging.basicConfig(format="%(message)s", level=logging_level)
def make_beta_schedule(
schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3
):
"""#### Create a beta schedule.
#### Args:
- `schedule` (str): The schedule type.
- `n_timestep` (int): The number of timesteps.
- `linear_start` (float, optional): The linear start value. Defaults to 1e-4.
- `linear_end` (float, optional): The linear end value. Defaults to 2e-2.
- `cosine_s` (float, optional): The cosine s value. Defaults to 8e-3.
#### Returns:
- `list`: The beta schedule.
"""
betas = (
torch.linspace(
linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64
)
** 2
)
return betas
def checkpoint(func, inputs, params, flag):
"""#### Create a checkpoint.
#### Args:
- `func` (callable): The function to checkpoint.
- `inputs` (list): The inputs to the function.
- `params` (list): The parameters of the function.
- `flag` (bool): The checkpoint flag.
#### Returns:
- `any`: The checkpointed output.
"""
return func(*inputs)
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
"""#### Create a timestep embedding.
#### Args:
- `timesteps` (torch.Tensor): The timesteps.
- `dim` (int): The embedding dimension.
- `max_period` (int, optional): The maximum period. Defaults to 10000.
- `repeat_only` (bool, optional): Whether to repeat only. Defaults to False.
#### Returns:
- `torch.Tensor`: The timestep embedding.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device)
/ half
)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
return embedding
def timestep_embedding_flux(t: torch.Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""#### Create a timestep embedding.
#### Args:
- `timesteps` (torch.Tensor): The timesteps.
- `dim` (int): The embedding dimension.
- `max_period` (int, optional): The maximum period. Defaults to 10000.
- `repeat_only` (bool, optional): Whether to repeat only. Defaults to False.
#### Returns:
- `torch.Tensor`: The timestep embedding.
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
/ half
)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7.0, device="cpu"):
"""#### Get the sigmas for Karras sampling.
constructs the noise schedule of Karras et al. (2022).
#### Args:
- `n` (int): The number of sigmas.
- `sigma_min` (float): The minimum sigma value.
- `sigma_max` (float): The maximum sigma value.
- `rho` (float, optional): The rho value. Defaults to 7.0.
- `device` (str, optional): The device to use. Defaults to "cpu".
#### Returns:
- `torch.Tensor`: The sigmas.
"""
ramp = torch.linspace(0, 1, n, device=device)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return util.append_zero(sigmas).to(device)
def get_ancestral_step(sigma_from, sigma_to, eta=1.0):
"""
#### Calculate the ancestral step in a diffusion process.
This function computes the values of `sigma_down` and `sigma_up` based on the
input parameters `sigma_from`, `sigma_to`, and `eta`. These values are used
in the context of diffusion models to determine the next step in the process.
#### Parameters:
- `sigma_from` (float): The starting value of sigma.
- `sigma_to` (float): The target value of sigma.
- `eta` (float, optional): A scaling factor for the step size. Default is 1.0.
#### Returns:
- `tuple`: A tuple containing `sigma_down` and `sigma_up`:
- `sigma_down` (float): The computed value of sigma for the downward step.
- `sigma_up` (float): The computed value of sigma for the upward step.
"""
sigma_up = min(
sigma_to,
eta * (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5,
)
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
return sigma_down, sigma_up
def default_noise_sampler(x):
"""
#### Returns a noise sampling function that generates random noise with the same shape as the input tensor `x`.
#### Args:
- `x` (torch.Tensor): The input tensor whose shape will be used to generate random noise.
#### Returns:
- `function`: A function that takes two arguments, `sigma` and `sigma_next`, and returns a tensor of random noise
with the same shape as `x`.
"""
return lambda sigma, sigma_next: torch.randn_like(x)
class BatchedBrownianTree:
"""#### A class to represent a batched Brownian tree for stochastic differential equations.
#### Attributes:
- `cpu_tree` : bool
Indicates if the tree is on CPU.
- `sign` : int
Sign indicating the order of t0 and t1.
- `batched` : bool
Indicates if the tree is batched.
- `trees` : list
List of BrownianTree instances.
#### Methods:
- `__init__(x, t0, t1, seed=None, **kwargs)`:
Initializes the BatchedBrownianTree with given parameters.
- `sort(a, b)`:
Static method to sort two values and return them along with a sign.
- `__call__(t0, t1)`:
Calls the Brownian tree with given time points t0 and t1.
"""
def __init__(self, x, t0, t1, seed=None, **kwargs):
self.cpu_tree = True
if "cpu" in kwargs:
self.cpu_tree = kwargs.pop("cpu")
t0, t1, self.sign = self.sort(t0, t1)
w0 = kwargs.get("w0", torch.zeros_like(x))
if seed is None:
seed = torch.randint(0, 2**63 - 1, []).item()
self.batched = True
seed = [seed]
self.batched = False
self.trees = [
torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs)
for s in seed
]
@staticmethod
def sort(a, b):
"""#### Sort two values and return them along with a sign.
#### Args:
- `a` (float): The first value.
- `b` (float): The second value.
#### Returns:
- `tuple`: A tuple containing the sorted values and a sign:
"""
return (a, b, 1) if a < b else (b, a, -1)
def __call__(self, t0, t1):
"""#### Call the Brownian tree with given time points t0 and t1.
#### Args:
- `t0` (torch.Tensor): The starting time point.
- `t1` (torch.Tensor): The target time point.
#### Returns:
- `torch.Tensor`: The Brownian tree values.
"""
t0, t1, sign = self.sort(t0, t1)
w = torch.stack(
[
tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device)
for tree in self.trees
]
) * (self.sign * sign)
return w if self.batched else w[0]
class BrownianTreeNoiseSampler:
"""#### A class to sample noise using a Brownian tree approach.
#### Attributes:
- `transform` (callable): A function to transform the sigma values.
- `tree` (BatchedBrownianTree): An instance of the BatchedBrownianTree class.
#### Methods:
- `__init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False)`:
Initializes the BrownianTreeNoiseSampler with the given parameters.
- `__call__(self, sigma, sigma_next)`:
Samples noise between the given sigma values.
"""
def __init__(
self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False
):
"""#### Initializes the BrownianTreeNoiseSampler with the given parameters.
#### Args:
- `x` (Tensor): The initial tensor.
- `sigma_min` (float): The minimum sigma value.
- `sigma_max` (float): The maximum sigma value.
- `seed` (int, optional): The seed for random number generation. Defaults to None.
- `transform` (callable, optional): A function to transform the sigma values. Defaults to identity function.
- `cpu` (bool, optional): Whether to use CPU for computations. Defaults to False.
"""
self.transform = transform
t0, t1 = (
self.transform(torch.as_tensor(sigma_min)),
self.transform(torch.as_tensor(sigma_max)),
)
self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)
def __call__(self, sigma, sigma_next):
"""#### Samples noise between the given sigma values.
#### Args:
- `sigma` (float): The current sigma value.
- `sigma_next` (float): The next sigma value.
#### Returns:
- `Tensor`: The sampled noise.
"""
t0, t1 = (
self.transform(torch.as_tensor(sigma)),
self.transform(torch.as_tensor(sigma_next)),
)
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
|