File size: 8,917 Bytes
1d117d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import contextlib
import unittest
import torch

from . import first_block_cache


class ApplyFBCacheOnModel:

    def patch(
        self,
        model,
        object_to_patch,
        residual_diff_threshold,
        max_consecutive_cache_hits=-1,
        start=0.0,
        end=1.0,
    ):
        if residual_diff_threshold <= 0.0 or max_consecutive_cache_hits == 0:
            return (model, )

        # first_block_cache.patch_get_output_data()

        using_validation = max_consecutive_cache_hits >= 0 or start > 0 or end < 1
        if using_validation:
            model_sampling = model.get_model_object("model_sampling")
            start_sigma, end_sigma = (float(
                model_sampling.percent_to_sigma(pct)) for pct in (start, end))
            del model_sampling

            @torch.compiler.disable()
            def validate_use_cache(use_cached):
                nonlocal consecutive_cache_hits
                use_cached = use_cached and end_sigma <= current_timestep <= start_sigma
                use_cached = use_cached and (max_consecutive_cache_hits < 0
                                             or consecutive_cache_hits
                                             < max_consecutive_cache_hits)
                consecutive_cache_hits = consecutive_cache_hits + 1 if use_cached else 0
                return use_cached
        else:
            validate_use_cache = None

        prev_timestep = None
        prev_input_state = None
        current_timestep = None
        consecutive_cache_hits = 0

        def reset_cache_state():
            # Resets the cache state and hits/time tracking variables.
            nonlocal prev_input_state, prev_timestep, consecutive_cache_hits
            prev_input_state = prev_timestep = None
            consecutive_cache_hits = 0
            first_block_cache.set_current_cache_context(
                first_block_cache.create_cache_context())

        def ensure_cache_state(model_input: torch.Tensor, timestep: float):
            # Validates the current cache state and hits/time tracking variables
            # and triggers a reset if necessary. Also updates current_timestep.
            nonlocal current_timestep
            input_state = (model_input.shape, model_input.dtype, model_input.device)
            need_reset = (
                prev_timestep is None or
                prev_input_state != input_state or
                first_block_cache.get_current_cache_context() is None or
                timestep >= prev_timestep
            )
            if need_reset:
                reset_cache_state()
            current_timestep = timestep

        def update_cache_state(model_input: torch.Tensor, timestep: float):
            # Updates the previous timestep and input state validation variables.
            nonlocal prev_timestep, prev_input_state
            prev_timestep = timestep
            prev_input_state = (model_input.shape, model_input.dtype, model_input.device)

        model = model[0].clone()
        diffusion_model = model.get_model_object(object_to_patch)

        if diffusion_model.__class__.__name__ in ("UNetModel", "Flux"):

            if diffusion_model.__class__.__name__ == "UNetModel":
                create_patch_function = first_block_cache.create_patch_unet_model__forward
            elif diffusion_model.__class__.__name__ == "Flux":
                create_patch_function = first_block_cache.create_patch_flux_forward_orig
            else:
                raise ValueError(
                    f"Unsupported model {diffusion_model.__class__.__name__}")

            patch_forward = create_patch_function(
                diffusion_model,
                residual_diff_threshold=residual_diff_threshold,
                validate_can_use_cache_function=validate_use_cache,
            )

            def model_unet_function_wrapper(model_function, kwargs):
                try:
                    input = kwargs["input"]
                    timestep = kwargs["timestep"]
                    c = kwargs["c"]
                    t = timestep[0].item()

                    ensure_cache_state(input, t)

                    with patch_forward():
                        result = model_function(input, timestep, **c)
                        update_cache_state(input, t)
                        return result
                except Exception as exc:
                    reset_cache_state()
                    raise exc from None
        else:
            is_non_native_ltxv = False
            if diffusion_model.__class__.__name__ == "LTXVTransformer3D":
                is_non_native_ltxv = True
                diffusion_model = diffusion_model.transformer

            double_blocks_name = None
            single_blocks_name = None
            if hasattr(diffusion_model, "transformer_blocks"):
                double_blocks_name = "transformer_blocks"
            elif hasattr(diffusion_model, "double_blocks"):
                double_blocks_name = "double_blocks"
            elif hasattr(diffusion_model, "joint_blocks"):
                double_blocks_name = "joint_blocks"
            else:
                raise ValueError(
                    f"No double blocks found for {diffusion_model.__class__.__name__}"
                )

            if hasattr(diffusion_model, "single_blocks"):
                single_blocks_name = "single_blocks"

            if is_non_native_ltxv:
                original_create_skip_layer_mask = getattr(
                    diffusion_model, "create_skip_layer_mask", None)
                if original_create_skip_layer_mask is not None:
                    # original_double_blocks = getattr(diffusion_model,
                    #                                  double_blocks_name)

                    def new_create_skip_layer_mask(self, *args, **kwargs):
                        # with unittest.mock.patch.object(self, double_blocks_name,
                        #                                 original_double_blocks):
                        #     return original_create_skip_layer_mask(*args, **kwargs)
                        # return original_create_skip_layer_mask(*args, **kwargs)
                        raise RuntimeError(
                            "STG is not supported with FBCache yet")

                    diffusion_model.create_skip_layer_mask = new_create_skip_layer_mask.__get__(
                        diffusion_model)

            cached_transformer_blocks = torch.nn.ModuleList([
                first_block_cache.CachedTransformerBlocks(
                    None if double_blocks_name is None else getattr(
                        diffusion_model, double_blocks_name),
                    None if single_blocks_name is None else getattr(
                        diffusion_model, single_blocks_name),
                    residual_diff_threshold=residual_diff_threshold,
                    validate_can_use_cache_function=validate_use_cache,
                    cat_hidden_states_first=diffusion_model.__class__.__name__
                    == "HunyuanVideo",
                    return_hidden_states_only=diffusion_model.__class__.
                    __name__ == "LTXVModel" or is_non_native_ltxv,
                    clone_original_hidden_states=diffusion_model.__class__.
                    __name__ == "LTXVModel",
                    return_hidden_states_first=diffusion_model.__class__.
                    __name__ != "OpenAISignatureMMDITWrapper",
                    accept_hidden_states_first=diffusion_model.__class__.
                    __name__ != "OpenAISignatureMMDITWrapper",
                )
            ])
            dummy_single_transformer_blocks = torch.nn.ModuleList()

            def model_unet_function_wrapper(model_function, kwargs):
                try:
                    input = kwargs["input"]
                    timestep = kwargs["timestep"]
                    c = kwargs["c"]
                    t = timestep[0].item()

                    ensure_cache_state(input, t)

                    with unittest.mock.patch.object(
                            diffusion_model,
                            double_blocks_name,
                            cached_transformer_blocks,
                    ), unittest.mock.patch.object(
                            diffusion_model,
                            single_blocks_name,
                            dummy_single_transformer_blocks,
                    ) if single_blocks_name is not None else contextlib.nullcontext(
                    ):
                        result = model_function(input, timestep, **c)
                        update_cache_state(input, t)
                        return result
                except Exception as exc:
                    reset_cache_state()
                    raise exc from None

        model.set_model_unet_function_wrapper(model_unet_function_wrapper)
        return (model, )