File size: 5,074 Bytes
1d117d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import logging
import torch
from modules.Utilities import util
from modules.AutoEncoders import VariationalAE
from modules.Device import Device
from modules.Model import ModelPatcher
from modules.NeuralNetwork import unet
from modules.clip import Clip


def load_checkpoint_guess_config(
    ckpt_path: str,
    output_vae: bool = True,
    output_clip: bool = True,
    output_clipvision: bool = False,
    embedding_directory: str = None,
    output_model: bool = True,
) -> tuple:
    """#### Load a checkpoint and guess the configuration.

    #### Args:
        - `ckpt_path` (str): The path to the checkpoint file.
        - `output_vae` (bool, optional): Whether to output the VAE. Defaults to True.
        - `output_clip` (bool, optional): Whether to output the CLIP. Defaults to True.
        - `output_clipvision` (bool, optional): Whether to output the CLIP vision. Defaults to False.
        - `embedding_directory` (str, optional): The embedding directory. Defaults to None.
        - `output_model` (bool, optional): Whether to output the model. Defaults to True.

    #### Returns:
        - `tuple`: The model patcher, CLIP, VAE, and CLIP vision.
    """
    sd = util.load_torch_file(ckpt_path)
    sd.keys()
    clip = None
    clipvision = None
    vae = None
    model = None
    model_patcher = None
    clip_target = None

    parameters = util.calculate_parameters(sd, "model.diffusion_model.")
    load_device = Device.get_torch_device()

    model_config = unet.model_config_from_unet(sd, "model.diffusion_model.")
    unet_dtype = unet.unet_dtype1(
        model_params=parameters,
        supported_dtypes=model_config.supported_inference_dtypes,
    )
    manual_cast_dtype = Device.unet_manual_cast(
        unet_dtype, load_device, model_config.supported_inference_dtypes
    )
    model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)

    if output_model:
        inital_load_device = Device.unet_inital_load_device(parameters, unet_dtype)
        Device.unet_offload_device()
        model = model_config.get_model(
            sd, "model.diffusion_model.", device=inital_load_device
        )
        model.load_model_weights(sd, "model.diffusion_model.")

    if output_vae:
        vae_sd = util.state_dict_prefix_replace(
            sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True
        )
        vae_sd = model_config.process_vae_state_dict(vae_sd)
        vae = VariationalAE.VAE(sd=vae_sd)

    if output_clip:
        clip_target = model_config.clip_target()
        if clip_target is not None:
            clip_sd = model_config.process_clip_state_dict(sd)
            if len(clip_sd) > 0:
                clip = Clip.CLIP(clip_target, embedding_directory=embedding_directory)
                m, u = clip.load_sd(clip_sd, full_model=True)
                if len(m) > 0:
                    m_filter = list(
                        filter(
                            lambda a: ".logit_scale" not in a
                            and ".transformer.text_projection.weight" not in a,
                            m,
                        )
                    )
                    if len(m_filter) > 0:
                        logging.warning("clip missing: {}".format(m))
                    else:
                        logging.debug("clip missing: {}".format(m))

                if len(u) > 0:
                    logging.debug("clip unexpected {}:".format(u))
            else:
                logging.warning(
                    "no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded."
                )

    left_over = sd.keys()
    if len(left_over) > 0:
        logging.debug("left over keys: {}".format(left_over))

    if output_model:
        model_patcher = ModelPatcher.ModelPatcher(
            model,
            load_device=load_device,
            offload_device=Device.unet_offload_device(),
            current_device=inital_load_device,
        )
        if inital_load_device != torch.device("cpu"):
            logging.info("loaded straight to GPU")
            Device.load_model_gpu(model_patcher)

    return (model_patcher, clip, vae, clipvision)


class CheckpointLoaderSimple:
    """#### Class for loading checkpoints."""

    def load_checkpoint(
        self, ckpt_name: str, output_vae: bool = True, output_clip: bool = True
    ) -> tuple:
        """#### Load a checkpoint.

        #### Args:
            - `ckpt_name` (str): The name of the checkpoint.
            - `output_vae` (bool, optional): Whether to output the VAE. Defaults to True.
            - `output_clip` (bool, optional): Whether to output the CLIP. Defaults to True.

        #### Returns:
            - `tuple`: The model patcher, CLIP, and VAE.
        """
        ckpt_path = f"{ckpt_name}"
        out = load_checkpoint_guess_config(
            ckpt_path,
            output_vae=output_vae,
            output_clip=output_clip,
            embedding_directory="./_internal/embeddings/",
        )
        print("loading", ckpt_path)
        return out[:3]