Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,293 Bytes
1d117d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 |
import logging
from typing import Dict, Optional, Tuple, Union
import numpy as np
import torch
from modules.Model import ModelPatcher
import torch.nn as nn
from modules.Attention import Attention
from modules.AutoEncoders import ResBlock
from modules.Device import Device
from modules.Utilities import util
from modules.cond import cast
class DiagonalGaussianDistribution(object):
"""#### Represents a diagonal Gaussian distribution parameterized by mean and log-variance.
#### Attributes:
- `parameters` (torch.Tensor): The concatenated mean and log-variance of the distribution.
- `mean` (torch.Tensor): The mean of the distribution.
- `logvar` (torch.Tensor): The log-variance of the distribution, clamped between -30.0 and 20.0.
- `std` (torch.Tensor): The standard deviation of the distribution, computed as exp(0.5 * logvar).
- `var` (torch.Tensor): The variance of the distribution, computed as exp(logvar).
- `deterministic` (bool): If True, the distribution is deterministic.
#### Methods:
- `sample() -> torch.Tensor`:
Samples from the distribution using the reparameterization trick.
- `kl(other: DiagonalGaussianDistribution = None) -> torch.Tensor`:
Computes the Kullback-Leibler divergence between this distribution and a standard normal distribution.
If `other` is provided, computes the KL divergence between this distribution and `other`.
"""
def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
self.parameters = parameters
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
def sample(self) -> torch.Tensor:
"""#### Samples from the distribution using the reparameterization trick.
#### Returns:
- `torch.Tensor`: A sample from the distribution.
"""
x = self.mean + self.std * torch.randn(self.mean.shape).to(
device=self.parameters.device
)
return x
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
"""#### Computes the Kullback-Leibler divergence between this distribution and a standard normal distribution.
If `other` is provided, computes the KL divergence between this distribution and `other`.
#### Args:
- `other` (DiagonalGaussianDistribution, optional): Another distribution to compute the KL divergence with.
#### Returns:
- `torch.Tensor`: The KL divergence.
"""
return 0.5 * torch.sum(
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
dim=[1, 2, 3],
)
class DiagonalGaussianRegularizer(torch.nn.Module):
"""#### Regularizer for diagonal Gaussian distributions."""
def __init__(self, sample: bool = True):
"""#### Initialize the regularizer.
#### Args:
- `sample` (bool, optional): Whether to sample from the distribution. Defaults to True.
"""
super().__init__()
self.sample = sample
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
"""#### Forward pass for the regularizer.
#### Args:
- `z` (torch.Tensor): The input tensor.
#### Returns:
- `Tuple[torch.Tensor, dict]`: The regularized tensor and a log dictionary.
"""
log = dict()
posterior = DiagonalGaussianDistribution(z)
if self.sample:
z = posterior.sample()
else:
z = posterior.mode()
kl_loss = posterior.kl()
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
log["kl_loss"] = kl_loss
return z, log
class AutoencodingEngine(nn.Module):
"""#### Class representing an autoencoding engine."""
def __init__(self, encoder: nn.Module, decoder: nn.Module, regularizer: nn.Module, flux: bool = False):
"""#### Initialize the autoencoding engine.
#### Args:
- `encoder` (nn.Module): The encoder module.
- `decoder` (nn.Module): The decoder module.
- `regularizer` (nn.Module): The regularizer module.
"""
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.regularization = regularizer
if not flux:
self.post_quant_conv = cast.disable_weight_init.Conv2d(4, 4, 1)
self.quant_conv = cast.disable_weight_init.Conv2d(8, 8, 1)
def get_last_layer(self):
"""#### Get the last layer of the decoder.
Returns:
- `nn.Module`: The last layer of the decoder.
"""
return self.decoder.get_last_layer()
def decode(self, z: torch.Tensor, flux:bool = False, **kwargs) -> torch.Tensor:
"""#### Decode the latent tensor.
#### Args:
- `z` (torch.Tensor): The latent tensor.
- `decoder_kwargs` (dict): Additional arguments for the decoder.
#### Returns:
- `torch.Tensor`: The decoded tensor.
"""
if flux:
x = self.decoder(z, **kwargs)
return x
dec = self.post_quant_conv(z)
dec = self.decoder(dec, **kwargs)
return dec
def encode(
self,
x: torch.Tensor,
return_reg_log: bool = False,
unregularized: bool = False,
flux: bool = False,
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
"""#### Encode the input tensor.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `return_reg_log` (bool, optional): Whether to return the regularization log. Defaults to False.
#### Returns:
- `Union[torch.Tensor, Tuple[torch.Tensor, dict]]`: The encoded tensor and optionally the regularization log.
"""
z = self.encoder(x)
if not flux:
z = self.quant_conv(z)
if unregularized:
return z, dict()
z, reg_log = self.regularization(z)
if return_reg_log:
return z, reg_log
return z
ops = cast.disable_weight_init
if Device.xformers_enabled_vae():
pass
def nonlinearity(x: torch.Tensor) -> torch.Tensor:
"""#### Apply the swish nonlinearity.
#### Args:
- `x` (torch.Tensor): The input tensor.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
return x * torch.sigmoid(x)
class Upsample(nn.Module):
"""#### Class representing an upsample layer."""
def __init__(self, in_channels: int, with_conv: bool):
"""#### Initialize the upsample layer.
#### Args:
- `in_channels` (int): The number of input channels.
- `with_conv` (bool): Whether to use convolution.
"""
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = ops.Conv2d(
in_channels, in_channels, kernel_size=3, stride=1, padding=1
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""#### Forward pass for the upsample layer.
#### Args:
- `x` (torch.Tensor): The input tensor.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
if self.with_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
"""#### Class representing a downsample layer."""
def __init__(self, in_channels: int, with_conv: bool):
"""#### Initialize the downsample layer.
#### Args:
- `in_channels` (int): The number of input channels.
- `with_conv` (bool): Whether to use convolution.
"""
super().__init__()
self.with_conv = with_conv
if self.with_conv:
# no asymmetric padding in torch conv, must do it ourselves
self.conv = ops.Conv2d(
in_channels, in_channels, kernel_size=3, stride=2, padding=0
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""#### Forward pass for the downsample layer.
#### Args:
- `x` (torch.Tensor): The input tensor.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
return x
class Encoder(nn.Module):
"""#### Class representing an encoder."""
def __init__(
self,
*,
ch: int,
out_ch: int,
ch_mult: Tuple[int, ...] = (1, 2, 4, 8),
num_res_blocks: int,
attn_resolutions: Tuple[int, ...],
dropout: float = 0.0,
resamp_with_conv: bool = True,
in_channels: int,
resolution: int,
z_channels: int,
double_z: bool = True,
use_linear_attn: bool = False,
attn_type: str = "vanilla",
**ignore_kwargs,
):
"""#### Initialize the encoder.
#### Args:
- `ch` (int): The base number of channels.
- `out_ch` (int): The number of output channels.
- `ch_mult` (Tuple[int, ...], optional): Channel multiplier at each resolution. Defaults to (1, 2, 4, 8).
- `num_res_blocks` (int): The number of residual blocks.
- `attn_resolutions` (Tuple[int, ...]): The resolutions at which to apply attention.
- `dropout` (float, optional): The dropout rate. Defaults to 0.0.
- `resamp_with_conv` (bool, optional): Whether to use convolution for resampling. Defaults to True.
- `in_channels` (int): The number of input channels.
- `resolution` (int): The resolution of the input.
- `z_channels` (int): The number of latent channels.
- `double_z` (bool, optional): Whether to double the latent channels. Defaults to True.
- `use_linear_attn` (bool, optional): Whether to use linear attention. Defaults to False.
- `attn_type` (str, optional): The type of attention. Defaults to "vanilla".
"""
super().__init__()
if use_linear_attn:
attn_type = "linear"
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# downsampling
self.conv_in = ops.Conv2d(
in_channels, self.ch, kernel_size=3, stride=1, padding=1
)
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
ResBlock.ResnetBlock(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
)
)
block_in = block_out
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in, resamp_with_conv)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResBlock.ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
self.mid.attn_1 = Attention.make_attn(block_in, attn_type=attn_type)
self.mid.block_2 = ResBlock.ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
# end
self.norm_out = Attention.Normalize(block_in)
self.conv_out = ops.Conv2d(
block_in,
2 * z_channels if double_z else z_channels,
kernel_size=3,
stride=1,
padding=1,
)
self._device = torch.device("cpu")
self._dtype = torch.float32
def to(self, device=None, dtype=None):
"""#### Move the encoder to a device and data type.
#### Args:
- `device` (torch.device, optional): The device to move to. Defaults to None.
- `dtype` (torch.dtype, optional): The data type to move to. Defaults to None.
#### Returns:
- `nn.Module`: The encoder.
"""
if device is not None:
self._device = device
if dtype is not None:
self._dtype = dtype
return super().to(device=device, dtype=dtype)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""#### Forward pass for the encoder.
#### Args:
- `x` (torch.Tensor): The input tensor.
#### Returns:
- `torch.Tensor`: The encoded tensor.
"""
if x.device != self._device or x.dtype != self._dtype:
self.to(device=x.device, dtype=x.dtype)
# timestep embedding
temb = None
# downsampling
h = self.conv_in(x)
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](h, temb)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
if i_level != self.num_resolutions - 1:
h = self.down[i_level].downsample(h)
# middle
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
"""#### Class representing a decoder."""
def __init__(
self,
*,
ch: int,
out_ch: int,
ch_mult: Tuple[int, ...] = (1, 2, 4, 8),
num_res_blocks: int,
attn_resolutions: Tuple[int, ...],
dropout: float = 0.0,
resamp_with_conv: bool = True,
in_channels: int,
resolution: int,
z_channels: int,
give_pre_end: bool = False,
tanh_out: bool = False,
use_linear_attn: bool = False,
conv_out_op: nn.Module = ops.Conv2d,
resnet_op: nn.Module = ResBlock.ResnetBlock,
attn_op: nn.Module = Attention.AttnBlock,
**ignorekwargs,
):
"""#### Initialize the decoder.
#### Args:
- `ch` (int): The base number of channels.
- `out_ch` (int): The number of output channels.
- `ch_mult` (Tuple[int, ...], optional): Channel multiplier at each resolution. Defaults to (1, 2, 4, 8).
- `num_res_blocks` (int): The number of residual blocks.
- `attn_resolutions` (Tuple[int, ...]): The resolutions at which to apply attention.
- `dropout` (float, optional): The dropout rate. Defaults to 0.0.
- `resamp_with_conv` (bool, optional): Whether to use convolution for resampling. Defaults to True.
- `in_channels` (int): The number of input channels.
- `resolution` (int): The resolution of the input.
- `z_channels` (int): The number of latent channels.
- `give_pre_end` (bool, optional): Whether to give pre-end. Defaults to False.
- `tanh_out` (bool, optional): Whether to use tanh activation at the output. Defaults to False.
- `use_linear_attn` (bool, optional): Whether to use linear attention. Defaults to False.
- `conv_out_op` (nn.Module, optional): The convolution output operation. Defaults to ops.Conv2d.
- `resnet_op` (nn.Module, optional): The residual block operation. Defaults to ResBlock.ResnetBlock.
- `attn_op` (nn.Module, optional): The attention block operation. Defaults to Attention.AttnBlock.
"""
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.give_pre_end = give_pre_end
self.tanh_out = tanh_out
# compute in_ch_mult, block_in and curr_res at lowest res
(1,) + tuple(ch_mult)
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
logging.debug(
"Working with z of shape {} = {} dimensions.".format(
self.z_shape, np.prod(self.z_shape)
)
)
# z to block_in
self.conv_in = ops.Conv2d(
z_channels, block_in, kernel_size=3, stride=1, padding=1
)
# middle
self.mid = nn.Module()
self.mid.block_1 = resnet_op(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
self.mid.attn_1 = attn_op(block_in)
self.mid.block_2 = resnet_op(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
resnet_op(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
)
)
block_in = block_out
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Attention.Normalize(block_in)
self.conv_out = conv_out_op(
block_in, out_ch, kernel_size=3, stride=1, padding=1
)
def forward(self, z: torch.Tensor, **kwargs) -> torch.Tensor:
"""#### Forward pass for the decoder.
#### Args:
- `z` (torch.Tensor): The input tensor.
- `**kwargs`: Additional arguments.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
# assert z.shape[1:] == self.z_shape[1:]
self.last_z_shape = z.shape
# timestep embedding
temb = None
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h, temb, **kwargs)
h = self.mid.attn_1(h, **kwargs)
h = self.mid.block_2(h, temb, **kwargs)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h, temb, **kwargs)
if i_level != 0:
h = self.up[i_level].upsample(h)
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h, **kwargs)
return h
class VAE:
"""#### Class representing a Variational Autoencoder (VAE)."""
def __init__(
self,
sd: Optional[dict] = None,
device: Optional[torch.device] = None,
config: Optional[dict] = None,
dtype: Optional[torch.dtype] = None,
flux: Optional[bool] = False,
):
"""#### Initialize the VAE.
#### Args:
- `sd` (dict, optional): The state dictionary. Defaults to None.
- `device` (torch.device, optional): The device to use. Defaults to None.
- `config` (dict, optional): The configuration dictionary. Defaults to None.
- `dtype` (torch.dtype, optional): The data type. Defaults to None.
"""
self.memory_used_encode = lambda shape, dtype: (
1767 * shape[2] * shape[3]
) * Device.dtype_size(
dtype
) # These are for AutoencoderKL and need tweaking (should be lower)
self.memory_used_decode = lambda shape, dtype: (
2178 * shape[2] * shape[3] * 64
) * Device.dtype_size(dtype)
self.downscale_ratio = 8
self.upscale_ratio = 8
self.latent_channels = 4
self.output_channels = 3
self.process_input = lambda image: image * 2.0 - 1.0
self.process_output = lambda image: torch.clamp(
(image + 1.0) / 2.0, min=0.0, max=1.0
)
self.working_dtypes = [torch.bfloat16, torch.float32]
if config is None:
if "decoder.conv_in.weight" in sd:
# default SD1.x/SD2.x VAE parameters
ddconfig = {
"double_z": True,
"z_channels": 4,
"resolution": 256,
"in_channels": 3,
"out_ch": 3,
"ch": 128,
"ch_mult": [1, 2, 4, 4],
"num_res_blocks": 2,
"attn_resolutions": [],
"dropout": 0.0,
}
if (
"encoder.down.2.downsample.conv.weight" not in sd
and "decoder.up.3.upsample.conv.weight" not in sd
): # Stable diffusion x4 upscaler VAE
ddconfig["ch_mult"] = [1, 2, 4]
self.downscale_ratio = 4
self.upscale_ratio = 4
self.latent_channels = ddconfig["z_channels"] = sd[
"decoder.conv_in.weight"
].shape[1]
# Initialize model
self.first_stage_model = AutoencodingEngine(
Encoder(**ddconfig),
Decoder(**ddconfig),
DiagonalGaussianRegularizer(),
flux=flux
)
else:
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None
return
self.first_stage_model = self.first_stage_model.eval()
m, u = self.first_stage_model.load_state_dict(sd, strict=False)
if len(m) > 0:
logging.warning("Missing VAE keys {}".format(m))
if len(u) > 0:
logging.debug("Leftover VAE keys {}".format(u))
if device is None:
device = Device.vae_device()
self.device = device
offload_device = Device.vae_offload_device()
if dtype is None:
dtype = Device.vae_dtype()
self.vae_dtype = dtype
self.first_stage_model.to(self.vae_dtype)
self.output_device = Device.intermediate_device()
self.patcher = ModelPatcher.ModelPatcher(
self.first_stage_model,
load_device=self.device,
offload_device=offload_device,
)
logging.debug(
"VAE load device: {}, offload device: {}, dtype: {}".format(
self.device, offload_device, self.vae_dtype
)
)
def vae_encode_crop_pixels(self, pixels: torch.Tensor) -> torch.Tensor:
"""#### Crop the input pixels to be compatible with the VAE.
#### Args:
- `pixels` (torch.Tensor): The input pixel tensor.
#### Returns:
- `torch.Tensor`: The cropped pixel tensor.
"""
(pixels.shape[1] // self.downscale_ratio) * self.downscale_ratio
(pixels.shape[2] // self.downscale_ratio) * self.downscale_ratio
return pixels
def decode(self, samples_in: torch.Tensor, flux:bool = False) -> torch.Tensor:
"""#### Decode the latent samples to pixel samples.
#### Args:
- `samples_in` (torch.Tensor): The input latent samples.
#### Returns:
- `torch.Tensor`: The decoded pixel samples.
"""
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
Device.load_models_gpu([self.patcher], memory_required=memory_used)
free_memory = Device.get_free_memory(self.device)
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
pixel_samples = torch.empty(
(
samples_in.shape[0],
3,
round(samples_in.shape[2] * self.upscale_ratio),
round(samples_in.shape[3] * self.upscale_ratio),
),
device=self.output_device,
)
for x in range(0, samples_in.shape[0], batch_number):
samples = (
samples_in[x : x + batch_number].to(self.vae_dtype).to(self.device)
)
pixel_samples[x : x + batch_number] = self.process_output(
self.first_stage_model.decode(samples, flux=flux).to(self.output_device).float()
)
pixel_samples = pixel_samples.to(self.output_device).movedim(1, -1)
return pixel_samples
def encode(self, pixel_samples: torch.Tensor, flux:bool = False) -> torch.Tensor:
"""#### Encode the pixel samples to latent samples.
#### Args:
- `pixel_samples` (torch.Tensor): The input pixel samples.
#### Returns:
- `torch.Tensor`: The encoded latent samples.
"""
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
pixel_samples = pixel_samples.movedim(-1, 1)
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
Device.load_models_gpu([self.patcher], memory_required=memory_used)
free_memory = Device.get_free_memory(self.device)
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
samples = torch.empty(
(
pixel_samples.shape[0],
self.latent_channels,
round(pixel_samples.shape[2] // self.downscale_ratio),
round(pixel_samples.shape[3] // self.downscale_ratio),
),
device=self.output_device,
)
for x in range(0, pixel_samples.shape[0], batch_number):
pixels_in = (
self.process_input(pixel_samples[x : x + batch_number])
.to(self.vae_dtype)
.to(self.device)
)
samples[x : x + batch_number] = (
self.first_stage_model.encode(pixels_in, flux=flux).to(self.output_device).float()
)
return samples
def get_sd(self):
"""#### Get the state dictionary.
#### Returns:
- `dict`: The state dictionary.
"""
return self.first_stage_model.state_dict()
class VAEDecode:
"""#### Class for decoding VAE samples."""
def decode(self, vae: VAE, samples: dict, flux:bool = False) -> Tuple[torch.Tensor]:
"""#### Decode the VAE samples.
#### Args:
- `vae` (VAE): The VAE instance.
- `samples` (dict): The samples dictionary.
#### Returns:
- `Tuple[torch.Tensor]`: The decoded samples.
"""
return (vae.decode(samples["samples"], flux=flux),)
class VAEEncode:
"""#### Class for encoding VAE samples."""
def encode(self, vae: VAE, pixels: torch.Tensor, flux:bool = False) -> Tuple[dict]:
"""#### Encode the VAE samples.
#### Args:
- `vae` (VAE): The VAE instance.
- `pixels` (torch.Tensor): The input pixel tensor.
#### Returns:
- `Tuple[dict]`: The encoded samples dictionary.
"""
t = vae.encode(pixels[:, :, :, :3], flux=flux)
return ({"samples": t},)
class VAELoader:
"""#### Class for loading VAEs."""
# TODO: scale factor?
def load_vae(self, vae_name):
"""#### Load the VAE.
#### Args:
- `vae_name`: The name of the VAE.
#### Returns:
- `Tuple[VAE]`: The VAE instance.
"""
if vae_name in ["taesd", "taesdxl", "taesd3", "taef1"]:
sd = self.load_taesd(vae_name)
else:
vae_path = "./_internal/vae/" + vae_name
sd = util.load_torch_file(vae_path)
vae = VAE(sd=sd)
return (vae,)
|