File size: 11,484 Bytes
1d117d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import threading
import torch
from tqdm.auto import trange
from modules.Utilities import util


from modules.sample import sampling_util

disable_gui = False


@torch.no_grad()
def sample_euler_ancestral(
    model,
    x,
    sigmas,
    extra_args=None,
    callback=None,
    disable=None,
    eta=1.0,
    s_noise=1.0,
    noise_sampler=None,
    pipeline=False,
):
    """#### Perform ancestral sampling using the Euler method.

    #### Args:
        - `model` (torch.nn.Module): The model to use for denoising.
        - `x` (torch.Tensor): The input tensor to be denoised.
        - `sigmas` (list or torch.Tensor): A list or tensor of sigma values for the noise schedule.
        - `extra_args` (dict, optional): Additional arguments to pass to the model. Defaults to None.
        - `callback` (callable, optional): A callback function to be called at each iteration. Defaults to None.
        - `disable` (bool, optional): If True, disables the progress bar. Defaults to None.
        - `eta` (float, optional): The eta parameter for the ancestral step. Defaults to 1.0.
        - `s_noise` (float, optional): The noise scaling factor. Defaults to 1.0.
        - `noise_sampler` (callable, optional): A function to sample noise. Defaults to None.

    #### Returns:
        - `torch.Tensor`: The denoised tensor after ancestral sampling.
    """
    global disable_gui
    disable_gui = True if pipeline is True else False
    if disable_gui is False:
        from modules.AutoEncoders import taesd
        from modules.user import app_instance
    extra_args = {} if extra_args is None else extra_args
    noise_sampler = sampling_util.default_noise_sampler(x) if noise_sampler is None else noise_sampler
    s_in = x.new_ones([x.shape[0]])

    for i in trange(len(sigmas) - 1, disable=disable):
        # Move interrupt check outside pipeline condition
        if not pipeline and hasattr(app_instance.app, 'interrupt_flag') and app_instance.app.interrupt_flag is True:
            return x

        if pipeline is False:
            try:
                app_instance.app.title(f"LightDiffusion - {i}it")
                app_instance.app.progress.set(((i)/(len(sigmas)-1)))
            except:
                pass

        # Rest of sampling code remains the same
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        sigma_down, sigma_up = sampling_util.get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
        d = util.to_d(x, sigmas[i], denoised)
        dt = sigma_down - sigmas[i]
        x = x + d * dt
        if sigmas[i + 1] > 0:
            x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up

        if pipeline is False:
            if app_instance.app.previewer_var.get() is True and i % 5 == 0:
                threading.Thread(target=taesd.taesd_preview, args=(x,)).start()

    return x

@torch.no_grad()
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2, pipeline=False, seed=None):
    """DPM-Solver++ (stochastic)."""
    global disable_gui
    disable_gui = True if pipeline is True else False
    if disable_gui is False:
        from modules.AutoEncoders import taesd
        from modules.user import app_instance
    if len(sigmas) <= 1:
        return x

    sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
    noise_sampler = sampling_util.BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    sigma_fn = lambda t: t.neg().exp()
    t_fn = lambda sigma: sigma.log().neg()

    for i in trange(len(sigmas) - 1, disable=disable):
        # Move interrupt check outside pipeline condition
        if not pipeline and hasattr(app_instance.app, 'interrupt_flag') and app_instance.app.interrupt_flag is True:
            return x

        if pipeline is False:
            try:
                app_instance.app.title(f"LightDiffusion - {i}it")
                app_instance.app.progress.set(((i)/(len(sigmas)-1)))
            except:
                pass
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
        if sigmas[i + 1] == 0:
            # Euler method
            d = util.to_d(x, sigmas[i], denoised)
            dt = sigmas[i + 1] - sigmas[i]
            x = x + d * dt
        else:
            # DPM-Solver++
            t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
            h = t_next - t
            s = t + h * r
            fac = 1 / (2 * r)

            # Step 1
            sd, su = sampling_util.get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
            s_ = t_fn(sd)
            x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
            x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
            denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)

            # Step 2
            sd, su = sampling_util.get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
            t_next_ = t_fn(sd)
            denoised_d = (1 - fac) * denoised + fac * denoised_2
            x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
            x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
        if pipeline is False:
            if app_instance.app.previewer_var.get() is True and i % 5 == 0:
                threading.Thread(target=taesd.taesd_preview, args=(x,)).start()
    return x

@torch.no_grad()
def sample_dpmpp_2m(
    model,
    x,
    sigmas,
    extra_args=None,
    callback=None,
    disable=None,
    pipeline=False,
):
    """
    #### Samples from a model using the DPM-Solver++(2M) SDE method.

    #### Args:
        - `model` (torch.nn.Module): The model to sample from.
        - `x` (torch.Tensor): The initial input tensor.
        - `sigmas` (torch.Tensor): A tensor of sigma values for the SDE.
        - `extra_args` (dict, optional): Additional arguments for the model. Default is None.
        - `callback` (callable, optional): A callback function to be called at each step. Default is None.
        - `disable` (bool, optional): If True, disables the progress bar. Default is None.
        - `pipeline` (bool, optional): If True, disables the progress bar. Default is False.

    #### Returns:
        - `torch.Tensor`: The final sampled tensor.
    """
    global disable_gui
    disable_gui = True if pipeline is True else False
    if disable_gui is False:
        from modules.AutoEncoders import taesd
        from modules.user import app_instance
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    def sigma_fn(t):
        return t.neg().exp()
    def t_fn(sigma):
        return sigma.log().neg()
    old_denoised = None

    for i in trange(len(sigmas) - 1, disable=disable):
        if not pipeline and hasattr(app_instance.app, 'interrupt_flag') and app_instance.app.interrupt_flag is True:
            return x

        if pipeline is False:
            app_instance.app.progress.set(((i)/(len(sigmas)-1)))
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
        t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
        h = t_next - t
        if old_denoised is None or sigmas[i + 1] == 0:
            x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
        else:
            h_last = t - t_fn(sigmas[i - 1])
            r = h_last / h
            denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
            x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
        old_denoised = denoised
        if pipeline is False:
            if app_instance.app.previewer_var.get() is True and i % 5 == 0:
                threading.Thread(target=taesd.taesd_preview, args=(x,)).start()
            else:
                pass
    return x


@torch.no_grad()
def sample_euler(
    model: torch.nn.Module,
    x: torch.Tensor,
    sigmas: torch.Tensor,
    extra_args: dict = None,
    callback: callable = None,
    disable: bool = None,
    s_churn: float = 0.0,
    s_tmin: float = 0.0,
    s_tmax: float = float("inf"),
    s_noise: float = 1.0,
    pipeline: bool = False,
):
    """#### Implements Algorithm 2 (Euler steps) from Karras et al. (2022).

    #### Args:
        - `model` (torch.nn.Module): The model to use for denoising.
        - `x` (torch.Tensor): The input tensor to be denoised.
        - `sigmas` (list or torch.Tensor): A list or tensor of sigma values for the noise schedule.
        - `extra_args` (dict, optional): Additional arguments to pass to the model. Defaults to None.
        - `callback` (callable, optional): A callback function to be called at each iteration. Defaults to None.
        - `disable` (bool, optional): If True, disables the progress bar. Defaults to None.
        - `s_churn` (float, optional): The churn rate. Defaults to 0.0.
        - `s_tmin` (float, optional): The minimum sigma value for churn. Defaults to 0.0.
        - `s_tmax` (float, optional): The maximum sigma value for churn. Defaults to float("inf").
        - `s_noise` (float, optional): The noise scaling factor. Defaults to 1.0.
        - `pipeline` (bool, optional): If True, disables the progress bar. Defaults to False.

    #### Returns:
        - `torch.Tensor`: The denoised tensor after Euler sampling.
    """
    global disable_gui
    disable_gui = True if pipeline is True else False
    if disable_gui is False:
        from modules.AutoEncoders import taesd
        from modules.user import app_instance

    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])

    for i in trange(len(sigmas) - 1, disable=disable):
        if not pipeline and hasattr(app_instance.app, 'interrupt_flag') and app_instance.app.interrupt_flag is True:
            return x

        if pipeline is False:
            app_instance.app.progress.set(((i)/(len(sigmas)-1)))
        if s_churn > 0:
            gamma = (
                min(s_churn / (len(sigmas) - 1), 2**0.5 - 1)
                if s_tmin <= sigmas[i] <= s_tmax
                else 0.0
            )
            sigma_hat = sigmas[i] * (gamma + 1)
        else:
            gamma = 0
            sigma_hat = sigmas[i]

        if gamma > 0:
            eps = torch.randn_like(x) * s_noise
            x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
        denoised = model(x, sigma_hat * s_in, **extra_args)
        d = util.to_d(x, sigma_hat, denoised)
        if callback is not None:
            callback(
                {
                    "x": x,
                    "i": i,
                    "sigma": sigmas[i],
                    "sigma_hat": sigma_hat,
                    "denoised": denoised,
                }
            )
        dt = sigmas[i + 1] - sigma_hat
        # Euler method
        x = x + d * dt
        if pipeline is False:
            if app_instance.app.previewer_var.get() is True and i % 5 == 0:
                threading.Thread(target=taesd.taesd_preview, args=(x, True)).start()
            else:
                pass
    return x