Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,484 Bytes
1d117d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import threading
import torch
from tqdm.auto import trange
from modules.Utilities import util
from modules.sample import sampling_util
disable_gui = False
@torch.no_grad()
def sample_euler_ancestral(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
eta=1.0,
s_noise=1.0,
noise_sampler=None,
pipeline=False,
):
"""#### Perform ancestral sampling using the Euler method.
#### Args:
- `model` (torch.nn.Module): The model to use for denoising.
- `x` (torch.Tensor): The input tensor to be denoised.
- `sigmas` (list or torch.Tensor): A list or tensor of sigma values for the noise schedule.
- `extra_args` (dict, optional): Additional arguments to pass to the model. Defaults to None.
- `callback` (callable, optional): A callback function to be called at each iteration. Defaults to None.
- `disable` (bool, optional): If True, disables the progress bar. Defaults to None.
- `eta` (float, optional): The eta parameter for the ancestral step. Defaults to 1.0.
- `s_noise` (float, optional): The noise scaling factor. Defaults to 1.0.
- `noise_sampler` (callable, optional): A function to sample noise. Defaults to None.
#### Returns:
- `torch.Tensor`: The denoised tensor after ancestral sampling.
"""
global disable_gui
disable_gui = True if pipeline is True else False
if disable_gui is False:
from modules.AutoEncoders import taesd
from modules.user import app_instance
extra_args = {} if extra_args is None else extra_args
noise_sampler = sampling_util.default_noise_sampler(x) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
# Move interrupt check outside pipeline condition
if not pipeline and hasattr(app_instance.app, 'interrupt_flag') and app_instance.app.interrupt_flag is True:
return x
if pipeline is False:
try:
app_instance.app.title(f"LightDiffusion - {i}it")
app_instance.app.progress.set(((i)/(len(sigmas)-1)))
except:
pass
# Rest of sampling code remains the same
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = sampling_util.get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
d = util.to_d(x, sigmas[i], denoised)
dt = sigma_down - sigmas[i]
x = x + d * dt
if sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
if pipeline is False:
if app_instance.app.previewer_var.get() is True and i % 5 == 0:
threading.Thread(target=taesd.taesd_preview, args=(x,)).start()
return x
@torch.no_grad()
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2, pipeline=False, seed=None):
"""DPM-Solver++ (stochastic)."""
global disable_gui
disable_gui = True if pipeline is True else False
if disable_gui is False:
from modules.AutoEncoders import taesd
from modules.user import app_instance
if len(sigmas) <= 1:
return x
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = sampling_util.BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
for i in trange(len(sigmas) - 1, disable=disable):
# Move interrupt check outside pipeline condition
if not pipeline and hasattr(app_instance.app, 'interrupt_flag') and app_instance.app.interrupt_flag is True:
return x
if pipeline is False:
try:
app_instance.app.title(f"LightDiffusion - {i}it")
app_instance.app.progress.set(((i)/(len(sigmas)-1)))
except:
pass
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
# Euler method
d = util.to_d(x, sigmas[i], denoised)
dt = sigmas[i + 1] - sigmas[i]
x = x + d * dt
else:
# DPM-Solver++
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
s = t + h * r
fac = 1 / (2 * r)
# Step 1
sd, su = sampling_util.get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
s_ = t_fn(sd)
x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
# Step 2
sd, su = sampling_util.get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
t_next_ = t_fn(sd)
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
if pipeline is False:
if app_instance.app.previewer_var.get() is True and i % 5 == 0:
threading.Thread(target=taesd.taesd_preview, args=(x,)).start()
return x
@torch.no_grad()
def sample_dpmpp_2m(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
pipeline=False,
):
"""
#### Samples from a model using the DPM-Solver++(2M) SDE method.
#### Args:
- `model` (torch.nn.Module): The model to sample from.
- `x` (torch.Tensor): The initial input tensor.
- `sigmas` (torch.Tensor): A tensor of sigma values for the SDE.
- `extra_args` (dict, optional): Additional arguments for the model. Default is None.
- `callback` (callable, optional): A callback function to be called at each step. Default is None.
- `disable` (bool, optional): If True, disables the progress bar. Default is None.
- `pipeline` (bool, optional): If True, disables the progress bar. Default is False.
#### Returns:
- `torch.Tensor`: The final sampled tensor.
"""
global disable_gui
disable_gui = True if pipeline is True else False
if disable_gui is False:
from modules.AutoEncoders import taesd
from modules.user import app_instance
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
def sigma_fn(t):
return t.neg().exp()
def t_fn(sigma):
return sigma.log().neg()
old_denoised = None
for i in trange(len(sigmas) - 1, disable=disable):
if not pipeline and hasattr(app_instance.app, 'interrupt_flag') and app_instance.app.interrupt_flag is True:
return x
if pipeline is False:
app_instance.app.progress.set(((i)/(len(sigmas)-1)))
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
if old_denoised is None or sigmas[i + 1] == 0:
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
else:
h_last = t - t_fn(sigmas[i - 1])
r = h_last / h
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
old_denoised = denoised
if pipeline is False:
if app_instance.app.previewer_var.get() is True and i % 5 == 0:
threading.Thread(target=taesd.taesd_preview, args=(x,)).start()
else:
pass
return x
@torch.no_grad()
def sample_euler(
model: torch.nn.Module,
x: torch.Tensor,
sigmas: torch.Tensor,
extra_args: dict = None,
callback: callable = None,
disable: bool = None,
s_churn: float = 0.0,
s_tmin: float = 0.0,
s_tmax: float = float("inf"),
s_noise: float = 1.0,
pipeline: bool = False,
):
"""#### Implements Algorithm 2 (Euler steps) from Karras et al. (2022).
#### Args:
- `model` (torch.nn.Module): The model to use for denoising.
- `x` (torch.Tensor): The input tensor to be denoised.
- `sigmas` (list or torch.Tensor): A list or tensor of sigma values for the noise schedule.
- `extra_args` (dict, optional): Additional arguments to pass to the model. Defaults to None.
- `callback` (callable, optional): A callback function to be called at each iteration. Defaults to None.
- `disable` (bool, optional): If True, disables the progress bar. Defaults to None.
- `s_churn` (float, optional): The churn rate. Defaults to 0.0.
- `s_tmin` (float, optional): The minimum sigma value for churn. Defaults to 0.0.
- `s_tmax` (float, optional): The maximum sigma value for churn. Defaults to float("inf").
- `s_noise` (float, optional): The noise scaling factor. Defaults to 1.0.
- `pipeline` (bool, optional): If True, disables the progress bar. Defaults to False.
#### Returns:
- `torch.Tensor`: The denoised tensor after Euler sampling.
"""
global disable_gui
disable_gui = True if pipeline is True else False
if disable_gui is False:
from modules.AutoEncoders import taesd
from modules.user import app_instance
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
if not pipeline and hasattr(app_instance.app, 'interrupt_flag') and app_instance.app.interrupt_flag is True:
return x
if pipeline is False:
app_instance.app.progress.set(((i)/(len(sigmas)-1)))
if s_churn > 0:
gamma = (
min(s_churn / (len(sigmas) - 1), 2**0.5 - 1)
if s_tmin <= sigmas[i] <= s_tmax
else 0.0
)
sigma_hat = sigmas[i] * (gamma + 1)
else:
gamma = 0
sigma_hat = sigmas[i]
if gamma > 0:
eps = torch.randn_like(x) * s_noise
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = util.to_d(x, sigma_hat, denoised)
if callback is not None:
callback(
{
"x": x,
"i": i,
"sigma": sigmas[i],
"sigma_hat": sigma_hat,
"denoised": denoised,
}
)
dt = sigmas[i + 1] - sigma_hat
# Euler method
x = x + d * dt
if pipeline is False:
if app_instance.app.previewer_var.get() is True and i % 5 == 0:
threading.Thread(target=taesd.taesd_preview, args=(x, True)).start()
else:
pass
return x
|