File size: 8,179 Bytes
1d117d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import collections
import logging
import numpy as np
import scipy
import torch
from modules.sample import sampling_util


def calculate_start_end_timesteps(model: torch.nn.Module, conds: list) -> None:
    """#### Calculate the start and end timesteps for a model.

    #### Args:
        - `model` (torch.nn.Module): The input model.
        - `conds` (list): The list of conditions.
    """
    s = model.model_sampling
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
        if "start_percent" in x:
            timestep_start = s.percent_to_sigma(x["start_percent"])
        if "end_percent" in x:
            timestep_end = s.percent_to_sigma(x["end_percent"])

        if (timestep_start is not None) or (timestep_end is not None):
            n = x.copy()
            if timestep_start is not None:
                n["timestep_start"] = timestep_start
            if timestep_end is not None:
                n["timestep_end"] = timestep_end
            conds[t] = n


def pre_run_control(model: torch.nn.Module, conds: list) -> None:
    """#### Pre-run control for a model.

    #### Args:
        - `model` (torch.nn.Module): The input model.
        - `conds` (list): The list of conditions.
    """
    s = model.model_sampling
    for t in range(len(conds)):
        x = conds[t]

        def percent_to_timestep_function(a):
            return s.percent_to_sigma(a)
        if "control" in x:
            x["control"].pre_run(model, percent_to_timestep_function)


def apply_empty_x_to_equal_area(
    conds: list, uncond: list, name: str, uncond_fill_func: callable
) -> None:
    """#### Apply empty x to equal area.

    #### Args:
        - `conds` (list): The list of conditions.
        - `uncond` (list): The list of unconditional conditions.
        - `name` (str): The name.
        - `uncond_fill_func` (callable): The unconditional fill function.
    """
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
        if "area" not in x:
            if name in x and x[name] is not None:
                cond_cnets.append(x[name])
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
        if "area" not in x:
            if name in x and x[name] is not None:
                uncond_cnets.append(x[name])
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
        if name in o and o[name] is not None:
            n = o.copy()
            n[name] = uncond_fill_func(cond_cnets, x)
            uncond += [n]
        else:
            n = o.copy()
            n[name] = uncond_fill_func(cond_cnets, x)
            uncond[temp[1]] = n


def get_area_and_mult(
    conds: dict, x_in: torch.Tensor, timestep_in: int
) -> collections.namedtuple:
    """#### Get the area and multiplier.

    #### Args:
        - `conds` (dict): The conditions.
        - `x_in` (torch.Tensor): The input tensor.
        - `timestep_in` (int): The timestep.

    #### Returns:
        - `collections.namedtuple`: The area and multiplier.
    """
    area = (x_in.shape[2], x_in.shape[3], 0, 0)
    strength = 1.0

    input_x = x_in[:, :, area[2] : area[0] + area[2], area[3] : area[1] + area[3]]
    mask = torch.ones_like(input_x)
    mult = mask * strength

    conditioning = {}
    model_conds = conds["model_conds"]
    for c in model_conds:
        conditioning[c] = model_conds[c].process_cond(
            batch_size=x_in.shape[0], device=x_in.device, area=area
        )

    control = conds.get("control", None)
    patches = None
    cond_obj = collections.namedtuple(
        "cond_obj", ["input_x", "mult", "conditioning", "area", "control", "patches"]
    )
    return cond_obj(input_x, mult, conditioning, area, control, patches)


def normal_scheduler(
    model_sampling: torch.nn.Module, steps: int, sgm: bool = False, floor: bool = False
) -> torch.FloatTensor:
    """#### Create a normal scheduler.

    #### Args:
        - `model_sampling` (torch.nn.Module): The model sampling module.
        - `steps` (int): The number of steps.
        - `sgm` (bool, optional): Whether to use SGM. Defaults to False.
        - `floor` (bool, optional): Whether to floor the values. Defaults to False.

    #### Returns:
        - `torch.FloatTensor`: The scheduler.
    """
    s = model_sampling
    start = s.timestep(s.sigma_max)
    end = s.timestep(s.sigma_min)

    timesteps = torch.linspace(start, end, steps)

    sigs = []
    for x in range(len(timesteps)):
        ts = timesteps[x]
        sigs.append(s.sigma(ts))
    sigs += [0.0]
    return torch.FloatTensor(sigs)

def simple_scheduler(model_sampling: torch.nn.Module, steps: int) -> torch.FloatTensor:
    """#### Create a simple scheduler.

    #### Args:
        - `model_sampling` (torch.nn.Module): The model sampling module.
        - `steps` (int): The number of steps.

    #### Returns:
        - `torch.FloatTensor`: The scheduler.
    """
    s = model_sampling
    sigs = []
    ss = len(s.sigmas) / steps
    for x in range(steps):
        sigs += [float(s.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)

# Implemented based on: https://arxiv.org/abs/2407.12173
def beta_scheduler(model_sampling, steps, alpha=0.6, beta=0.6):
    total_timesteps = (len(model_sampling.sigmas) - 1)
    ts = 1 - np.linspace(0, 1, steps, endpoint=False)
    ts = np.rint(scipy.stats.beta.ppf(ts, alpha, beta) * total_timesteps)

    sigs = []
    last_t = -1
    for t in ts:
        if t != last_t:
            sigs += [float(model_sampling.sigmas[int(t)])]
        last_t = t
    sigs += [0.0]
    return torch.FloatTensor(sigs)

def calculate_sigmas(
    model_sampling: torch.nn.Module, scheduler_name: str, steps: int
) -> torch.Tensor:
    """#### Calculate the sigmas for a model.

    #### Args:
        - `model_sampling` (torch.nn.Module): The model sampling module.
        - `scheduler_name` (str): The scheduler name.
        - `steps` (int): The number of steps.

    #### Returns:
        - `torch.Tensor`: The calculated sigmas.
    """
    if scheduler_name == "karras":
        sigmas = sampling_util.get_sigmas_karras(
            n=steps,
            sigma_min=float(model_sampling.sigma_min),
            sigma_max=float(model_sampling.sigma_max),
        )
    elif scheduler_name == "normal":
        sigmas = normal_scheduler(model_sampling, steps)
    elif scheduler_name == "simple":
        sigmas = simple_scheduler(model_sampling, steps)
    elif scheduler_name == "beta":
        sigmas = beta_scheduler(model_sampling, steps)
    else:
        logging.error("error invalid scheduler {}".format(scheduler_name))
    return sigmas


def prepare_noise(
    latent_image: torch.Tensor, seed: int, noise_inds: list = None
) -> torch.Tensor:
    """#### Prepare noise for a latent image.

    #### Args:
        - `latent_image` (torch.Tensor): The latent image tensor.
        - `seed` (int): The seed for random noise.
        - `noise_inds` (list, optional): The noise indices. Defaults to None.

    #### Returns:
        - `torch.Tensor`: The prepared noise tensor.
    """
    generator = torch.manual_seed(seed)
    if noise_inds is None:
        return torch.randn(
            latent_image.size(),
            dtype=latent_image.dtype,
            layout=latent_image.layout,
            generator=generator,
            device="cpu",
        )

    unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
    noises = []
    for i in range(unique_inds[-1] + 1):
        noise = torch.randn(
            [1] + list(latent_image.size())[1:],
            dtype=latent_image.dtype,
            layout=latent_image.layout,
            generator=generator,
            device="cpu",
        )
        if i in unique_inds:
            noises.append(noise)
    noises = [noises[i] for i in inverse]
    noises = torch.cat(noises, axis=0)
    return noises