Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,179 Bytes
1d117d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import collections
import logging
import numpy as np
import scipy
import torch
from modules.sample import sampling_util
def calculate_start_end_timesteps(model: torch.nn.Module, conds: list) -> None:
"""#### Calculate the start and end timesteps for a model.
#### Args:
- `model` (torch.nn.Module): The input model.
- `conds` (list): The list of conditions.
"""
s = model.model_sampling
for t in range(len(conds)):
x = conds[t]
timestep_start = None
timestep_end = None
if "start_percent" in x:
timestep_start = s.percent_to_sigma(x["start_percent"])
if "end_percent" in x:
timestep_end = s.percent_to_sigma(x["end_percent"])
if (timestep_start is not None) or (timestep_end is not None):
n = x.copy()
if timestep_start is not None:
n["timestep_start"] = timestep_start
if timestep_end is not None:
n["timestep_end"] = timestep_end
conds[t] = n
def pre_run_control(model: torch.nn.Module, conds: list) -> None:
"""#### Pre-run control for a model.
#### Args:
- `model` (torch.nn.Module): The input model.
- `conds` (list): The list of conditions.
"""
s = model.model_sampling
for t in range(len(conds)):
x = conds[t]
def percent_to_timestep_function(a):
return s.percent_to_sigma(a)
if "control" in x:
x["control"].pre_run(model, percent_to_timestep_function)
def apply_empty_x_to_equal_area(
conds: list, uncond: list, name: str, uncond_fill_func: callable
) -> None:
"""#### Apply empty x to equal area.
#### Args:
- `conds` (list): The list of conditions.
- `uncond` (list): The list of unconditional conditions.
- `name` (str): The name.
- `uncond_fill_func` (callable): The unconditional fill function.
"""
cond_cnets = []
cond_other = []
uncond_cnets = []
uncond_other = []
for t in range(len(conds)):
x = conds[t]
if "area" not in x:
if name in x and x[name] is not None:
cond_cnets.append(x[name])
else:
cond_other.append((x, t))
for t in range(len(uncond)):
x = uncond[t]
if "area" not in x:
if name in x and x[name] is not None:
uncond_cnets.append(x[name])
else:
uncond_other.append((x, t))
if len(uncond_cnets) > 0:
return
for x in range(len(cond_cnets)):
temp = uncond_other[x % len(uncond_other)]
o = temp[0]
if name in o and o[name] is not None:
n = o.copy()
n[name] = uncond_fill_func(cond_cnets, x)
uncond += [n]
else:
n = o.copy()
n[name] = uncond_fill_func(cond_cnets, x)
uncond[temp[1]] = n
def get_area_and_mult(
conds: dict, x_in: torch.Tensor, timestep_in: int
) -> collections.namedtuple:
"""#### Get the area and multiplier.
#### Args:
- `conds` (dict): The conditions.
- `x_in` (torch.Tensor): The input tensor.
- `timestep_in` (int): The timestep.
#### Returns:
- `collections.namedtuple`: The area and multiplier.
"""
area = (x_in.shape[2], x_in.shape[3], 0, 0)
strength = 1.0
input_x = x_in[:, :, area[2] : area[0] + area[2], area[3] : area[1] + area[3]]
mask = torch.ones_like(input_x)
mult = mask * strength
conditioning = {}
model_conds = conds["model_conds"]
for c in model_conds:
conditioning[c] = model_conds[c].process_cond(
batch_size=x_in.shape[0], device=x_in.device, area=area
)
control = conds.get("control", None)
patches = None
cond_obj = collections.namedtuple(
"cond_obj", ["input_x", "mult", "conditioning", "area", "control", "patches"]
)
return cond_obj(input_x, mult, conditioning, area, control, patches)
def normal_scheduler(
model_sampling: torch.nn.Module, steps: int, sgm: bool = False, floor: bool = False
) -> torch.FloatTensor:
"""#### Create a normal scheduler.
#### Args:
- `model_sampling` (torch.nn.Module): The model sampling module.
- `steps` (int): The number of steps.
- `sgm` (bool, optional): Whether to use SGM. Defaults to False.
- `floor` (bool, optional): Whether to floor the values. Defaults to False.
#### Returns:
- `torch.FloatTensor`: The scheduler.
"""
s = model_sampling
start = s.timestep(s.sigma_max)
end = s.timestep(s.sigma_min)
timesteps = torch.linspace(start, end, steps)
sigs = []
for x in range(len(timesteps)):
ts = timesteps[x]
sigs.append(s.sigma(ts))
sigs += [0.0]
return torch.FloatTensor(sigs)
def simple_scheduler(model_sampling: torch.nn.Module, steps: int) -> torch.FloatTensor:
"""#### Create a simple scheduler.
#### Args:
- `model_sampling` (torch.nn.Module): The model sampling module.
- `steps` (int): The number of steps.
#### Returns:
- `torch.FloatTensor`: The scheduler.
"""
s = model_sampling
sigs = []
ss = len(s.sigmas) / steps
for x in range(steps):
sigs += [float(s.sigmas[-(1 + int(x * ss))])]
sigs += [0.0]
return torch.FloatTensor(sigs)
# Implemented based on: https://arxiv.org/abs/2407.12173
def beta_scheduler(model_sampling, steps, alpha=0.6, beta=0.6):
total_timesteps = (len(model_sampling.sigmas) - 1)
ts = 1 - np.linspace(0, 1, steps, endpoint=False)
ts = np.rint(scipy.stats.beta.ppf(ts, alpha, beta) * total_timesteps)
sigs = []
last_t = -1
for t in ts:
if t != last_t:
sigs += [float(model_sampling.sigmas[int(t)])]
last_t = t
sigs += [0.0]
return torch.FloatTensor(sigs)
def calculate_sigmas(
model_sampling: torch.nn.Module, scheduler_name: str, steps: int
) -> torch.Tensor:
"""#### Calculate the sigmas for a model.
#### Args:
- `model_sampling` (torch.nn.Module): The model sampling module.
- `scheduler_name` (str): The scheduler name.
- `steps` (int): The number of steps.
#### Returns:
- `torch.Tensor`: The calculated sigmas.
"""
if scheduler_name == "karras":
sigmas = sampling_util.get_sigmas_karras(
n=steps,
sigma_min=float(model_sampling.sigma_min),
sigma_max=float(model_sampling.sigma_max),
)
elif scheduler_name == "normal":
sigmas = normal_scheduler(model_sampling, steps)
elif scheduler_name == "simple":
sigmas = simple_scheduler(model_sampling, steps)
elif scheduler_name == "beta":
sigmas = beta_scheduler(model_sampling, steps)
else:
logging.error("error invalid scheduler {}".format(scheduler_name))
return sigmas
def prepare_noise(
latent_image: torch.Tensor, seed: int, noise_inds: list = None
) -> torch.Tensor:
"""#### Prepare noise for a latent image.
#### Args:
- `latent_image` (torch.Tensor): The latent image tensor.
- `seed` (int): The seed for random noise.
- `noise_inds` (list, optional): The noise indices. Defaults to None.
#### Returns:
- `torch.Tensor`: The prepared noise tensor.
"""
generator = torch.manual_seed(seed)
if noise_inds is None:
return torch.randn(
latent_image.size(),
dtype=latent_image.dtype,
layout=latent_image.layout,
generator=generator,
device="cpu",
)
unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
noises = []
for i in range(unique_inds[-1] + 1):
noise = torch.randn(
[1] + list(latent_image.size())[1:],
dtype=latent_image.dtype,
layout=latent_image.layout,
generator=generator,
device="cpu",
)
if i in unique_inds:
noises.append(noise)
noises = [noises[i] for i in inverse]
noises = torch.cat(noises, axis=0)
return noises
|