Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,368 Bytes
1d117d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 |
import copy
import logging
import uuid
import torch
from modules.NeuralNetwork import unet
from modules.Utilities import util
from modules.Device import Device
def wipe_lowvram_weight(m):
if hasattr(m, "prev_comfy_cast_weights"):
m.comfy_cast_weights = m.prev_comfy_cast_weights
del m.prev_comfy_cast_weights
m.weight_function = None
m.bias_function = None
class ModelPatcher:
def __init__(
self,
model: torch.nn.Module,
load_device: torch.device,
offload_device: torch.device,
size: int = 0,
current_device: torch.device = None,
weight_inplace_update: bool = False,
):
"""#### Initialize the ModelPatcher class.
#### Args:
- `model` (torch.nn.Module): The model.
- `load_device` (torch.device): The device to load the model on.
- `offload_device` (torch.device): The device to offload the model to.
- `size` (int, optional): The size of the model. Defaults to 0.
- `current_device` (torch.device, optional): The current device. Defaults to None.
- `weight_inplace_update` (bool, optional): Whether to update weights in place. Defaults to False.
"""
self.size = size
self.model = model
self.patches = {}
self.backup = {}
self.object_patches = {}
self.object_patches_backup = {}
self.model_options = {"transformer_options": {}}
self.model_size()
self.load_device = load_device
self.offload_device = offload_device
if current_device is None:
self.current_device = self.offload_device
else:
self.current_device = current_device
self.weight_inplace_update = weight_inplace_update
self.model_lowvram = False
self.lowvram_patch_counter = 0
self.patches_uuid = uuid.uuid4()
if not hasattr(self.model, "model_loaded_weight_memory"):
self.model.model_loaded_weight_memory = 0
if not hasattr(self.model, "model_lowvram"):
self.model.model_lowvram = False
if not hasattr(self.model, "lowvram_patch_counter"):
self.model.lowvram_patch_counter = 0
def loaded_size(self) -> int:
"""#### Get the loaded size
#### Returns:
- `int`: The loaded size
"""
return self.model.model_loaded_weight_memory
def model_size(self) -> int:
"""#### Get the size of the model.
#### Returns:
- `int`: The size of the model.
"""
if self.size > 0:
return self.size
model_sd = self.model.state_dict()
self.size = Device.module_size(self.model)
self.model_keys = set(model_sd.keys())
return self.size
def clone(self) -> "ModelPatcher":
"""#### Clone the ModelPatcher object.
#### Returns:
- `ModelPatcher`: The cloned ModelPatcher object.
"""
n = ModelPatcher(
self.model,
self.load_device,
self.offload_device,
self.size,
self.current_device,
weight_inplace_update=self.weight_inplace_update,
)
n.patches = {}
for k in self.patches:
n.patches[k] = self.patches[k][:]
n.patches_uuid = self.patches_uuid
n.object_patches = self.object_patches.copy()
n.model_options = copy.deepcopy(self.model_options)
n.model_keys = self.model_keys
n.backup = self.backup
n.object_patches_backup = self.object_patches_backup
return n
def is_clone(self, other: object) -> bool:
"""#### Check if the object is a clone.
#### Args:
- `other` (object): The other object.
#### Returns:
- `bool`: Whether the object is a clone.
"""
if hasattr(other, "model") and self.model is other.model:
return True
return False
def memory_required(self, input_shape: tuple) -> float:
"""#### Calculate the memory required for the model.
#### Args:
- `input_shape` (tuple): The input shape.
#### Returns:
- `float`: The memory required.
"""
return self.model.memory_required(input_shape=input_shape)
def set_model_unet_function_wrapper(self, unet_wrapper_function: callable) -> None:
"""#### Set the UNet function wrapper for the model.
#### Args:
- `unet_wrapper_function` (callable): The UNet function wrapper.
"""
self.model_options["model_function_wrapper"] = unet_wrapper_function
def set_model_denoise_mask_function(self, denoise_mask_function: callable) -> None:
"""#### Set the denoise mask function for the model.
#### Args:
- `denoise_mask_function` (callable): The denoise mask function.
"""
self.model_options["denoise_mask_function"] = denoise_mask_function
def get_model_object(self, name: str) -> object:
"""#### Get an object from the model.
#### Args:
- `name` (str): The name of the object.
#### Returns:
- `object`: The object.
"""
return util.get_attr(self.model, name)
def model_patches_to(self, device: torch.device) -> None:
"""#### Move model patches to a device.
#### Args:
- `device` (torch.device): The device.
"""
self.model_options["transformer_options"]
if "model_function_wrapper" in self.model_options:
wrap_func = self.model_options["model_function_wrapper"]
if hasattr(wrap_func, "to"):
self.model_options["model_function_wrapper"] = wrap_func.to(device)
def model_dtype(self) -> torch.dtype:
"""#### Get the data type of the model.
#### Returns:
- `torch.dtype`: The data type.
"""
if hasattr(self.model, "get_dtype"):
return self.model.get_dtype()
def add_patches(
self, patches: dict, strength_patch: float = 1.0, strength_model: float = 1.0
) -> list:
"""#### Add patches to the model.
#### Args:
- `patches` (dict): The patches to add.
- `strength_patch` (float, optional): The strength of the patches. Defaults to 1.0.
- `strength_model` (float, optional): The strength of the model. Defaults to 1.0.
#### Returns:
- `list`: The list of patched keys.
"""
p = set()
for k in patches:
if k in self.model_keys:
p.add(k)
current_patches = self.patches.get(k, [])
current_patches.append((strength_patch, patches[k], strength_model))
self.patches[k] = current_patches
self.patches_uuid = uuid.uuid4()
return list(p)
def set_model_patch(self, patch: list, name: str):
"""#### Set a patch for the model.
#### Args:
- `patch` (list): The patch.
- `name` (str): The name of the patch.
"""
to = self.model_options["transformer_options"]
if "patches" not in to:
to["patches"] = {}
to["patches"][name] = to["patches"].get(name, []) + [patch]
def set_model_attn1_patch(self, patch: list):
"""#### Set the attention 1 patch for the model.
#### Args:
- `patch` (list): The patch.
"""
self.set_model_patch(patch, "attn1_patch")
def set_model_attn2_patch(self, patch: list):
"""#### Set the attention 2 patch for the model.
#### Args:
- `patch` (list): The patch.
"""
self.set_model_patch(patch, "attn2_patch")
def set_model_attn1_output_patch(self, patch: list):
"""#### Set the attention 1 output patch for the model.
#### Args:
- `patch` (list): The patch.
"""
self.set_model_patch(patch, "attn1_output_patch")
def set_model_attn2_output_patch(self, patch: list):
"""#### Set the attention 2 output patch for the model.
#### Args:
- `patch` (list): The patch.
"""
self.set_model_patch(patch, "attn2_output_patch")
def model_state_dict(self, filter_prefix: str = None) -> dict:
"""#### Get the state dictionary of the model.
#### Args:
- `filter_prefix` (str, optional): The prefix to filter. Defaults to None.
#### Returns:
- `dict`: The state dictionary.
"""
sd = self.model.state_dict()
list(sd.keys())
return sd
def patch_weight_to_device(self, key: str, device_to: torch.device = None) -> None:
"""#### Patch the weight of a key to a device.
#### Args:
- `key` (str): The key.
- `device_to` (torch.device, optional): The device to patch to. Defaults to None.
"""
if key not in self.patches:
return
weight = util.get_attr(self.model, key)
inplace_update = self.weight_inplace_update
if key not in self.backup:
self.backup[key] = weight.to(
device=self.offload_device, copy=inplace_update
)
if device_to is not None:
temp_weight = Device.cast_to_device(
weight, device_to, torch.float32, copy=True
)
else:
temp_weight = weight.to(torch.float32, copy=True)
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(
weight.dtype
)
if inplace_update:
util.copy_to_param(self.model, key, out_weight)
else:
util.set_attr_param(self.model, key, out_weight)
def load(
self,
device_to: torch.device = None,
lowvram_model_memory: int = 0,
force_patch_weights: bool = False,
full_load: bool = False,
):
"""#### Load the model.
#### Args:
- `device_to` (torch.device, optional): The device to load to. Defaults to None.
- `lowvram_model_memory` (int, optional): The low VRAM model memory. Defaults to 0.
- `force_patch_weights` (bool, optional): Whether to force patch weights. Defaults to False.
- `full_load` (bool, optional): Whether to fully load the model. Defaults to False.
"""
mem_counter = 0
patch_counter = 0
lowvram_counter = 0
loading = []
for n, m in self.model.named_modules():
if hasattr(m, "comfy_cast_weights") or hasattr(m, "weight"):
loading.append((Device.module_size(m), n, m))
load_completely = []
loading.sort(reverse=True)
for x in loading:
n = x[1]
m = x[2]
module_mem = x[0]
lowvram_weight = False
if not full_load and hasattr(m, "comfy_cast_weights"):
if mem_counter + module_mem >= lowvram_model_memory:
lowvram_weight = True
lowvram_counter += 1
if hasattr(m, "prev_comfy_cast_weights"): # Already lowvramed
continue
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
if lowvram_weight:
if weight_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(weight_key)
if bias_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(bias_key)
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
else:
if hasattr(m, "comfy_cast_weights"):
if m.comfy_cast_weights:
wipe_lowvram_weight(m)
if hasattr(m, "weight"):
mem_counter += module_mem
load_completely.append((module_mem, n, m))
load_completely.sort(reverse=True)
for x in load_completely:
n = x[1]
m = x[2]
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
if hasattr(m, "comfy_patched_weights"):
if m.comfy_patched_weights is True:
continue
self.patch_weight_to_device(weight_key, device_to=device_to)
self.patch_weight_to_device(bias_key, device_to=device_to)
logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
m.comfy_patched_weights = True
for x in load_completely:
x[2].to(device_to)
if lowvram_counter > 0:
logging.info(
"loaded partially {} {} {}".format(
lowvram_model_memory / (1024 * 1024),
mem_counter / (1024 * 1024),
patch_counter,
)
)
self.model.model_lowvram = True
else:
logging.info(
"loaded completely {} {} {}".format(
lowvram_model_memory / (1024 * 1024),
mem_counter / (1024 * 1024),
full_load,
)
)
self.model.model_lowvram = False
if full_load:
self.model.to(device_to)
mem_counter = self.model_size()
self.model.lowvram_patch_counter += patch_counter
self.model.device = device_to
self.model.model_loaded_weight_memory = mem_counter
def patch_model_flux(
self,
device_to: torch.device = None,
lowvram_model_memory: int =0,
load_weights: bool = True,
force_patch_weights: bool = False,
):
"""#### Patch the model.
#### Args:
- `device_to` (torch.device, optional): The device to patch to. Defaults to None.
- `lowvram_model_memory` (int, optional): The low VRAM model memory. Defaults to 0.
- `load_weights` (bool, optional): Whether to load weights. Defaults to True.
- `force_patch_weights` (bool, optional): Whether to force patch weights. Defaults to False.
#### Returns:
- `torch.nn.Module`: The patched model.
"""
for k in self.object_patches:
old = util.set_attr(self.model, k, self.object_patches[k])
if k not in self.object_patches_backup:
self.object_patches_backup[k] = old
if lowvram_model_memory == 0:
full_load = True
else:
full_load = False
if load_weights:
self.load(
device_to,
lowvram_model_memory=lowvram_model_memory,
force_patch_weights=force_patch_weights,
full_load=full_load,
)
return self.model
def patch_model_lowvram_flux(
self,
device_to: torch.device = None,
lowvram_model_memory: int = 0,
force_patch_weights: bool = False,
) -> torch.nn.Module:
"""#### Patch the model for low VRAM.
#### Args:
- `device_to` (torch.device, optional): The device to patch to. Defaults to None.
- `lowvram_model_memory` (int, optional): The low VRAM model memory. Defaults to 0.
- `force_patch_weights` (bool, optional): Whether to force patch weights. Defaults to False.
#### Returns:
- `torch.nn.Module`: The patched model.
"""
self.patch_model(device_to)
logging.info(
"loading in lowvram mode {}".format(lowvram_model_memory / (1024 * 1024))
)
class LowVramPatch:
def __init__(self, key: str, model_patcher: "ModelPatcher"):
self.key = key
self.model_patcher = model_patcher
def __call__(self, weight: torch.Tensor) -> torch.Tensor:
return self.model_patcher.calculate_weight(
self.model_patcher.patches[self.key], weight, self.key
)
mem_counter = 0
patch_counter = 0
for n, m in self.model.named_modules():
lowvram_weight = False
if hasattr(m, "comfy_cast_weights"):
module_mem = Device.module_size(m)
if mem_counter + module_mem >= lowvram_model_memory:
lowvram_weight = True
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
if lowvram_weight:
if weight_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(weight_key)
else:
m.weight_function = LowVramPatch(weight_key, self)
patch_counter += 1
if bias_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(bias_key)
else:
m.bias_function = LowVramPatch(bias_key, self)
patch_counter += 1
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
else:
if hasattr(m, "weight"):
self.patch_weight_to_device(weight_key, device_to)
self.patch_weight_to_device(bias_key, device_to)
m.to(device_to)
mem_counter += Device.module_size(m)
logging.debug("lowvram: loaded module regularly {}".format(m))
self.model_lowvram = True
self.lowvram_patch_counter = patch_counter
return self.model
def patch_model(
self, device_to: torch.device = None, patch_weights: bool = True
) -> torch.nn.Module:
"""#### Patch the model.
#### Args:
- `device_to` (torch.device, optional): The device to patch to. Defaults to None.
- `patch_weights` (bool, optional): Whether to patch weights. Defaults to True.
#### Returns:
- `torch.nn.Module`: The patched model.
"""
for k in self.object_patches:
old = util.set_attr(self.model, k, self.object_patches[k])
if k not in self.object_patches_backup:
self.object_patches_backup[k] = old
if patch_weights:
model_sd = self.model_state_dict()
for key in self.patches:
if key not in model_sd:
logging.warning(
"could not patch. key doesn't exist in model: {}".format(key)
)
continue
self.patch_weight_to_device(key, device_to)
if device_to is not None:
self.model.to(device_to)
self.current_device = device_to
return self.model
def patch_model_lowvram(
self,
device_to: torch.device = None,
lowvram_model_memory: int = 0,
force_patch_weights: bool = False,
) -> torch.nn.Module:
"""#### Patch the model for low VRAM.
#### Args:
- `device_to` (torch.device, optional): The device to patch to. Defaults to None.
- `lowvram_model_memory` (int, optional): The low VRAM model memory. Defaults to 0.
- `force_patch_weights` (bool, optional): Whether to force patch weights. Defaults to False.
#### Returns:
- `torch.nn.Module`: The patched model.
"""
self.patch_model(device_to, patch_weights=False)
logging.info(
"loading in lowvram mode {}".format(lowvram_model_memory / (1024 * 1024))
)
class LowVramPatch:
def __init__(self, key: str, model_patcher: "ModelPatcher"):
self.key = key
self.model_patcher = model_patcher
def __call__(self, weight: torch.Tensor) -> torch.Tensor:
return self.model_patcher.calculate_weight(
self.model_patcher.patches[self.key], weight, self.key
)
mem_counter = 0
patch_counter = 0
for n, m in self.model.named_modules():
lowvram_weight = False
if hasattr(m, "comfy_cast_weights"):
module_mem = Device.module_size(m)
if mem_counter + module_mem >= lowvram_model_memory:
lowvram_weight = True
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
if lowvram_weight:
if weight_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(weight_key)
else:
m.weight_function = LowVramPatch(weight_key, self)
patch_counter += 1
if bias_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(bias_key)
else:
m.bias_function = LowVramPatch(bias_key, self)
patch_counter += 1
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
else:
if hasattr(m, "weight"):
self.patch_weight_to_device(weight_key, device_to)
self.patch_weight_to_device(bias_key, device_to)
m.to(device_to)
mem_counter += Device.module_size(m)
logging.debug("lowvram: loaded module regularly {}".format(m))
self.model_lowvram = True
self.lowvram_patch_counter = patch_counter
return self.model
def calculate_weight(
self, patches: list, weight: torch.Tensor, key: str
) -> torch.Tensor:
"""#### Calculate the weight of a key.
#### Args:
- `patches` (list): The list of patches.
- `weight` (torch.Tensor): The weight tensor.
- `key` (str): The key.
#### Returns:
- `torch.Tensor`: The calculated weight.
"""
for p in patches:
alpha = p[0]
v = p[1]
p[2]
v[0]
v = v[1]
mat1 = Device.cast_to_device(v[0], weight.device, torch.float32)
mat2 = Device.cast_to_device(v[1], weight.device, torch.float32)
v[4]
if v[2] is not None:
alpha *= v[2] / mat2.shape[0]
weight += (
(alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)))
.reshape(weight.shape)
.type(weight.dtype)
)
return weight
def unpatch_model(
self, device_to: torch.device = None, unpatch_weights: bool = True
) -> None:
"""#### Unpatch the model.
#### Args:
- `device_to` (torch.device, optional): The device to unpatch to. Defaults to None.
- `unpatch_weights` (bool, optional): Whether to unpatch weights. Defaults to True.
"""
if unpatch_weights:
keys = list(self.backup.keys())
for k in keys:
util.set_attr_param(self.model, k, self.backup[k])
self.backup.clear()
if device_to is not None:
self.model.to(device_to)
self.current_device = device_to
keys = list(self.object_patches_backup.keys())
self.object_patches_backup.clear()
def partially_load(self, device_to: torch.device, extra_memory: int = 0) -> int:
"""#### Partially load the model.
#### Args:
- `device_to` (torch.device): The device to load to.
- `extra_memory` (int, optional): The extra memory. Defaults to 0.
#### Returns:
- `int`: The memory loaded.
"""
self.unpatch_model(unpatch_weights=False)
self.patch_model(patch_weights=False)
full_load = False
if self.model.model_lowvram is False:
return 0
if self.model.model_loaded_weight_memory + extra_memory > self.model_size():
full_load = True
current_used = self.model.model_loaded_weight_memory
self.load(
device_to,
lowvram_model_memory=current_used + extra_memory,
full_load=full_load,
)
return self.model.model_loaded_weight_memory - current_used
def add_object_patch(self, name, obj):
self.object_patches[name] = obj
def unet_prefix_from_state_dict(state_dict: dict) -> str:
"""#### Get the UNet prefix from the state dictionary.
#### Args:
- `state_dict` (dict): The state dictionary.
#### Returns:
- `str`: The UNet prefix.
"""
candidates = [
"model.diffusion_model.", # ldm/sgm models
"model.model.", # audio models
]
counts = {k: 0 for k in candidates}
for k in state_dict:
for c in candidates:
if k.startswith(c):
counts[c] += 1
break
top = max(counts, key=counts.get)
if counts[top] > 5:
return top
else:
return "model." # aura flow and others
def load_diffusion_model_state_dict(
sd, model_options={}
) -> ModelPatcher:
"""#### Load the diffusion model state dictionary.
#### Args:
- `sd`: The state dictionary.
- `model_options` (dict, optional): The model options. Defaults to {}.
#### Returns:
- `ModelPatcher`: The model patcher.
"""
# load unet in diffusers or regular format
dtype = model_options.get("dtype", None)
# Allow loading unets from checkpoint files
diffusion_model_prefix = unet_prefix_from_state_dict(sd)
temp_sd = util.state_dict_prefix_replace(
sd, {diffusion_model_prefix: ""}, filter_keys=True
)
if len(temp_sd) > 0:
sd = temp_sd
parameters = util.calculate_parameters(sd)
load_device = Device.get_torch_device()
model_config = unet.model_config_from_unet(sd, "")
if model_config is not None:
new_sd = sd
offload_device = Device.unet_offload_device()
if dtype is None:
unet_dtype2 = Device.unet_dtype(
model_params=parameters,
supported_dtypes=model_config.supported_inference_dtypes,
)
else:
unet_dtype2 = dtype
manual_cast_dtype = Device.unet_manual_cast(
unet_dtype2, load_device, model_config.supported_inference_dtypes
)
model_config.set_inference_dtype(unet_dtype2, manual_cast_dtype)
model_config.custom_operations = model_options.get(
"custom_operations", model_config.custom_operations
)
model = model_config.get_model(new_sd, "")
model = model.to(offload_device)
model.load_model_weights(new_sd, "")
left_over = sd.keys()
if len(left_over) > 0:
logging.info("left over keys in unet: {}".format(left_over))
return ModelPatcher(model, load_device=load_device, offload_device=offload_device)
|