Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,068 Bytes
1d117d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import logging
import math
import torch
from modules.Utilities import Latent
from modules.Device import Device
from modules.NeuralNetwork import unet
from modules.cond import cast, cond
from modules.sample import sampling
class BaseModel(torch.nn.Module):
"""#### Base class for models."""
def __init__(
self,
model_config: object,
model_type: sampling.ModelType = sampling.ModelType.EPS,
device: torch.device = None,
unet_model: object = unet.UNetModel1,
flux: bool = False,
):
"""#### Initialize the BaseModel class.
#### Args:
- `model_config` (object): The model configuration.
- `model_type` (sampling.ModelType, optional): The model type. Defaults to sampling.ModelType.EPS.
- `device` (torch.device, optional): The device to use. Defaults to None.
- `unet_model` (object, optional): The UNet model. Defaults to unet.UNetModel1.
"""
super().__init__()
unet_config = model_config.unet_config
self.latent_format = model_config.latent_format
self.model_config = model_config
self.manual_cast_dtype = model_config.manual_cast_dtype
self.device = device
if flux:
if not unet_config.get("disable_unet_model_creation", False):
operations = model_config.custom_operations
self.diffusion_model = unet_model(
**unet_config, device=device, operations=operations
)
logging.info(
"model weight dtype {}, manual cast: {}".format(
self.get_dtype(), self.manual_cast_dtype
)
)
else:
if not unet_config.get("disable_unet_model_creation", False):
if self.manual_cast_dtype is not None:
operations = cast.manual_cast
else:
operations = cast.disable_weight_init
self.diffusion_model = unet_model(
**unet_config, device=device, operations=operations
)
self.model_type = model_type
self.model_sampling = sampling.model_sampling(model_config, model_type, flux=flux)
self.adm_channels = unet_config.get("adm_in_channels", None)
if self.adm_channels is None:
self.adm_channels = 0
self.concat_keys = ()
logging.info("model_type {}".format(model_type.name))
logging.debug("adm {}".format(self.adm_channels))
self.memory_usage_factor = model_config.memory_usage_factor if flux else 2.0
def apply_model(
self,
x: torch.Tensor,
t: torch.Tensor,
c_concat: torch.Tensor = None,
c_crossattn: torch.Tensor = None,
control: torch.Tensor = None,
transformer_options: dict = {},
**kwargs,
) -> torch.Tensor:
"""#### Apply the model to the input tensor.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `t` (torch.Tensor): The timestep tensor.
- `c_concat` (torch.Tensor, optional): The concatenated condition tensor. Defaults to None.
- `c_crossattn` (torch.Tensor, optional): The cross-attention condition tensor. Defaults to None.
- `control` (torch.Tensor, optional): The control tensor. Defaults to None.
- `transformer_options` (dict, optional): The transformer options. Defaults to {}.
- `**kwargs`: Additional keyword arguments.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
sigma = t
xc = self.model_sampling.calculate_input(sigma, x)
if c_concat is not None:
xc = torch.cat([xc] + [c_concat], dim=1)
context = c_crossattn
dtype = self.get_dtype()
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
xc = xc.to(dtype)
t = self.model_sampling.timestep(t).float()
context = context.to(dtype)
extra_conds = {}
for o in kwargs:
extra = kwargs[o]
if hasattr(extra, "dtype"):
if extra.dtype != torch.int and extra.dtype != torch.long:
extra = extra.to(dtype)
extra_conds[o] = extra
model_output = self.diffusion_model(
xc,
t,
context=context,
control=control,
transformer_options=transformer_options,
**extra_conds,
).float()
return self.model_sampling.calculate_denoised(sigma, model_output, x)
def get_dtype(self) -> torch.dtype:
"""#### Get the data type of the model.
#### Returns:
- `torch.dtype`: The data type.
"""
return self.diffusion_model.dtype
def encode_adm(self, **kwargs) -> None:
"""#### Encode the ADM.
#### Args:
- `**kwargs`: Additional keyword arguments.
#### Returns:
- `None`: The encoded ADM.
"""
return None
def extra_conds(self, **kwargs) -> dict:
"""#### Get the extra conditions.
#### Args:
- `**kwargs`: Additional keyword arguments.
#### Returns:
- `dict`: The extra conditions.
"""
out = {}
adm = self.encode_adm(**kwargs)
if adm is not None:
out["y"] = cond.CONDRegular(adm)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out["c_crossattn"] = cond.CONDCrossAttn(cross_attn)
cross_attn_cnet = kwargs.get("cross_attn_controlnet", None)
if cross_attn_cnet is not None:
out["crossattn_controlnet"] = cond.CONDCrossAttn(cross_attn_cnet)
return out
def load_model_weights(self, sd: dict, unet_prefix: str = "") -> "BaseModel":
"""#### Load the model weights.
#### Args:
- `sd` (dict): The state dictionary.
- `unet_prefix` (str, optional): The UNet prefix. Defaults to "".
#### Returns:
- `BaseModel`: The model with loaded weights.
"""
to_load = {}
keys = list(sd.keys())
for k in keys:
if k.startswith(unet_prefix):
to_load[k[len(unet_prefix) :]] = sd.pop(k)
to_load = self.model_config.process_unet_state_dict(to_load)
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
if len(m) > 0:
logging.warning("unet missing: {}".format(m))
if len(u) > 0:
logging.warning("unet unexpected: {}".format(u))
del to_load
return self
def process_latent_in(self, latent: torch.Tensor) -> torch.Tensor:
"""#### Process the latent input.
#### Args:
- `latent` (torch.Tensor): The latent tensor.
#### Returns:
- `torch.Tensor`: The processed latent tensor.
"""
return self.latent_format.process_in(latent)
def process_latent_out(self, latent: torch.Tensor) -> torch.Tensor:
"""#### Process the latent output.
#### Args:
- `latent` (torch.Tensor): The latent tensor.
#### Returns:
- `torch.Tensor`: The processed latent tensor.
"""
return self.latent_format.process_out(latent)
def memory_required(self, input_shape: tuple) -> float:
"""#### Calculate the memory required for the model.
#### Args:
- `input_shape` (tuple): The input shape.
#### Returns:
- `float`: The memory required.
"""
dtype = self.get_dtype()
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
# TODO: this needs to be tweaked
area = input_shape[0] * math.prod(input_shape[2:])
return (area * Device.dtype_size(dtype) * 0.01 * self.memory_usage_factor) * (
1024 * 1024
)
class BASE:
"""#### Base class for model configurations."""
unet_config = {}
unet_extra_config = {
"num_heads": -1,
"num_head_channels": 64,
}
required_keys = {}
clip_prefix = []
clip_vision_prefix = None
noise_aug_config = None
sampling_settings = {}
latent_format = Latent.LatentFormat
vae_key_prefix = ["first_stage_model."]
text_encoder_key_prefix = ["cond_stage_model."]
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
memory_usage_factor = 2.0
manual_cast_dtype = None
custom_operations = None
@classmethod
def matches(cls, unet_config: dict, state_dict: dict = None) -> bool:
"""#### Check if the UNet configuration matches.
#### Args:
- `unet_config` (dict): The UNet configuration.
- `state_dict` (dict, optional): The state dictionary. Defaults to None.
#### Returns:
- `bool`: Whether the configuration matches.
"""
for k in cls.unet_config:
if k not in unet_config or cls.unet_config[k] != unet_config[k]:
return False
if state_dict is not None:
for k in cls.required_keys:
if k not in state_dict:
return False
return True
def model_type(self, state_dict: dict, prefix: str = "") -> sampling.ModelType:
"""#### Get the model type.
#### Args:
- `state_dict` (dict): The state dictionary.
- `prefix` (str, optional): The prefix. Defaults to "".
#### Returns:
- `sampling.ModelType`: The model type.
"""
return sampling.ModelType.EPS
def inpaint_model(self) -> bool:
"""#### Check if the model is an inpaint model.
#### Returns:
- `bool`: Whether the model is an inpaint model.
"""
return self.unet_config["in_channels"] > 4
def __init__(self, unet_config: dict):
"""#### Initialize the BASE class.
#### Args:
- `unet_config` (dict): The UNet configuration.
"""
self.unet_config = unet_config.copy()
self.sampling_settings = self.sampling_settings.copy()
self.latent_format = self.latent_format()
for x in self.unet_extra_config:
self.unet_config[x] = self.unet_extra_config[x]
def get_model(
self, state_dict: dict, prefix: str = "", device: torch.device = None
) -> BaseModel:
"""#### Get the model.
#### Args:
- `state_dict` (dict): The state dictionary.
- `prefix` (str, optional): The prefix. Defaults to "".
- `device` (torch.device, optional): The device to use. Defaults to None.
#### Returns:
- `BaseModel`: The model.
"""
out = BaseModel(
self, model_type=self.model_type(state_dict, prefix), device=device
)
return out
def process_unet_state_dict(self, state_dict: dict) -> dict:
"""#### Process the UNet state dictionary.
#### Args:
- `state_dict` (dict): The state dictionary.
#### Returns:
- `dict`: The processed state dictionary.
"""
return state_dict
def process_vae_state_dict(self, state_dict: dict) -> dict:
"""#### Process the VAE state dictionary.
#### Args:
- `state_dict` (dict): The state dictionary.
#### Returns:
- `dict`: The processed state dictionary.
"""
return state_dict
def set_inference_dtype(
self, dtype: torch.dtype, manual_cast_dtype: torch.dtype
) -> None:
"""#### Set the inference data type.
#### Args:
- `dtype` (torch.dtype): The data type.
- `manual_cast_dtype` (torch.dtype): The manual cast data type.
"""
self.unet_config["dtype"] = dtype
self.manual_cast_dtype = manual_cast_dtype
|