File size: 10,281 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import logging
import math
import threading
import torch
import torchsde
from torch import nn

from modules.Utilities import util


disable_gui = False

logging_level = logging.INFO

logging.basicConfig(format="%(message)s", level=logging_level)


def make_beta_schedule(

    schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3

):
    """#### Create a beta schedule.



    #### Args:

        - `schedule` (str): The schedule type.

        - `n_timestep` (int): The number of timesteps.

        - `linear_start` (float, optional): The linear start value. Defaults to 1e-4.

        - `linear_end` (float, optional): The linear end value. Defaults to 2e-2.

        - `cosine_s` (float, optional): The cosine s value. Defaults to 8e-3.



    #### Returns:

        - `list`: The beta schedule.

    """
    betas = (
        torch.linspace(
            linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64
        )
        ** 2
    )
    return betas


def checkpoint(func, inputs, params, flag):
    """#### Create a checkpoint.



    #### Args:

        - `func` (callable): The function to checkpoint.

        - `inputs` (list): The inputs to the function.

        - `params` (list): The parameters of the function.

        - `flag` (bool): The checkpoint flag.



    #### Returns:

        - `any`: The checkpointed output.

    """
    return func(*inputs)

def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
    """#### Create a timestep embedding.



    #### Args:

        - `timesteps` (torch.Tensor): The timesteps.

        - `dim` (int): The embedding dimension.

        - `max_period` (int, optional): The maximum period. Defaults to 10000.

        - `repeat_only` (bool, optional): Whether to repeat only. Defaults to False.



    #### Returns:

        - `torch.Tensor`: The timestep embedding.

    """
    half = dim // 2
    freqs = torch.exp(
        -math.log(max_period)
        * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device)
        / half
    )
    args = timesteps[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    return embedding

def timestep_embedding_flux(t: torch.Tensor, dim, max_period=10000, time_factor: float = 1000.0):
    """#### Create a timestep embedding.



    #### Args:

        - `timesteps` (torch.Tensor): The timesteps.

        - `dim` (int): The embedding dimension.

        - `max_period` (int, optional): The maximum period. Defaults to 10000.

        - `repeat_only` (bool, optional): Whether to repeat only. Defaults to False.



    #### Returns:

        - `torch.Tensor`: The timestep embedding.

    """
    t = time_factor * t
    half = dim // 2
    freqs = torch.exp(
        -math.log(max_period)
        * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
        / half
    )

    args = t[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    if torch.is_floating_point(t):
        embedding = embedding.to(t)
    return embedding

def get_sigmas_karras(n, sigma_min, sigma_max, rho=7.0, device="cpu"):
    """#### Get the sigmas for Karras sampling.



    constructs the noise schedule of Karras et al. (2022).



    #### Args:

        - `n` (int): The number of sigmas.

        - `sigma_min` (float): The minimum sigma value.

        - `sigma_max` (float): The maximum sigma value.

        - `rho` (float, optional): The rho value. Defaults to 7.0.

        - `device` (str, optional): The device to use. Defaults to "cpu".



    #### Returns:

        - `torch.Tensor`: The sigmas.

    """
    ramp = torch.linspace(0, 1, n, device=device)
    min_inv_rho = sigma_min ** (1 / rho)
    max_inv_rho = sigma_max ** (1 / rho)
    sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
    return util.append_zero(sigmas).to(device)


def get_ancestral_step(sigma_from, sigma_to, eta=1.0):
    """

    #### Calculate the ancestral step in a diffusion process.



    This function computes the values of `sigma_down` and `sigma_up` based on the

    input parameters `sigma_from`, `sigma_to`, and `eta`. These values are used

    in the context of diffusion models to determine the next step in the process.



    #### Parameters:

        - `sigma_from` (float): The starting value of sigma.

        - `sigma_to` (float): The target value of sigma.

        - `eta` (float, optional): A scaling factor for the step size. Default is 1.0.



    #### Returns:

    - `tuple`: A tuple containing `sigma_down` and `sigma_up`:

        - `sigma_down` (float): The computed value of sigma for the downward step.

        - `sigma_up` (float): The computed value of sigma for the upward step.

    """
    sigma_up = min(
        sigma_to,
        eta * (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5,
    )
    sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
    return sigma_down, sigma_up


def default_noise_sampler(x):
    """

    #### Returns a noise sampling function that generates random noise with the same shape as the input tensor `x`.



    #### Args:

        - `x` (torch.Tensor): The input tensor whose shape will be used to generate random noise.



    #### Returns:

        - `function`: A function that takes two arguments, `sigma` and `sigma_next`, and returns a tensor of random noise

                  with the same shape as `x`.

    """
    return lambda sigma, sigma_next: torch.randn_like(x)


class BatchedBrownianTree:
    """#### A class to represent a batched Brownian tree for stochastic differential equations.



    #### Attributes:

        - `cpu_tree` : bool

            Indicates if the tree is on CPU.

        - `sign` : int

            Sign indicating the order of t0 and t1.

        - `batched` : bool

            Indicates if the tree is batched.

        - `trees` : list

            List of BrownianTree instances.



    #### Methods:

        - `__init__(x, t0, t1, seed=None, **kwargs)`:

            Initializes the BatchedBrownianTree with given parameters.

        - `sort(a, b)`:

            Static method to sort two values and return them along with a sign.

        - `__call__(t0, t1)`:

            Calls the Brownian tree with given time points t0 and t1.

    """

    def __init__(self, x, t0, t1, seed=None, **kwargs):
        self.cpu_tree = True
        if "cpu" in kwargs:
            self.cpu_tree = kwargs.pop("cpu")
        t0, t1, self.sign = self.sort(t0, t1)
        w0 = kwargs.get("w0", torch.zeros_like(x))
        if seed is None:
            seed = torch.randint(0, 2**63 - 1, []).item()
        self.batched = True
        seed = [seed]
        self.batched = False
        self.trees = [
            torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs)
            for s in seed
        ]

    @staticmethod
    def sort(a, b):
        """#### Sort two values and return them along with a sign.



        #### Args:

            - `a` (float): The first value.

            - `b` (float): The second value.



        #### Returns:

            - `tuple`: A tuple containing the sorted values and a sign:

        """
        return (a, b, 1) if a < b else (b, a, -1)

    def __call__(self, t0, t1):
        """#### Call the Brownian tree with given time points t0 and t1.



        #### Args:

            - `t0` (torch.Tensor): The starting time point.

            - `t1` (torch.Tensor): The target time point.



        #### Returns:

            - `torch.Tensor`: The Brownian tree values.

        """
        t0, t1, sign = self.sort(t0, t1)
        w = torch.stack(
            [
                tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device)
                for tree in self.trees
            ]
        ) * (self.sign * sign)
        return w if self.batched else w[0]


class BrownianTreeNoiseSampler:
    """#### A class to sample noise using a Brownian tree approach.



    #### Attributes:

        - `transform` (callable): A function to transform the sigma values.

        - `tree` (BatchedBrownianTree): An instance of the BatchedBrownianTree class.



    #### Methods:

        - `__init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False)`:

            Initializes the BrownianTreeNoiseSampler with the given parameters.

        - `__call__(self, sigma, sigma_next)`:

            Samples noise between the given sigma values.

    """

    def __init__(

        self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False

    ):
        """#### Initializes the BrownianTreeNoiseSampler with the given parameters.



        #### Args:

            - `x` (Tensor): The initial tensor.

            - `sigma_min` (float): The minimum sigma value.

            - `sigma_max` (float): The maximum sigma value.

            - `seed` (int, optional): The seed for random number generation. Defaults to None.

            - `transform` (callable, optional): A function to transform the sigma values. Defaults to identity function.

            - `cpu` (bool, optional): Whether to use CPU for computations. Defaults to False.

        """
        self.transform = transform
        t0, t1 = (
            self.transform(torch.as_tensor(sigma_min)),
            self.transform(torch.as_tensor(sigma_max)),
        )
        self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)

    def __call__(self, sigma, sigma_next):
        """#### Samples noise between the given sigma values.



        #### Args:

            - `sigma` (float): The current sigma value.

            - `sigma_next` (float): The next sigma value.



        #### Returns:

            - `Tensor`: The sampled noise.

        """
        t0, t1 = (
            self.transform(torch.as_tensor(sigma)),
            self.transform(torch.as_tensor(sigma_next)),
        )
        return self.tree(t0, t1) / (t1 - t0).abs().sqrt()