File size: 28,060 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
 
d9a2e19
cfe609e
 
 
 
 
 
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
 
 
d9a2e19
 
 
 
 
cfe609e
 
 
 
 
 
 
 
 
 
 
 
d9a2e19
 
 
 
 
 
 
 
cfe609e
d9a2e19
cfe609e
 
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
d9a2e19
cfe609e
 
d9a2e19
cfe609e
d9a2e19
cfe609e
 
 
 
 
 
 
d9a2e19
cfe609e
 
 
 
d9a2e19
cfe609e
 
 
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
import threading
import torch
from tqdm.auto import trange
from modules.Utilities import util


from modules.sample import sampling_util

disable_gui = False


@torch.no_grad()
def sample_euler_ancestral(

    model,

    x,

    sigmas,

    extra_args=None,

    callback=None,

    disable=None,

    eta=1.0,

    s_noise=1.0,

    noise_sampler=None,

    pipeline=False,

):
    # Pre-calculate common values
    device = x.device
    global disable_gui
    disable_gui = pipeline

    if not disable_gui:
        from modules.AutoEncoders import taesd
        from modules.user import app_instance

    # Pre-allocate tensors and init noise sampler
    s_in = torch.ones((x.shape[0],), device=device)
    noise_sampler = (
        sampling_util.default_noise_sampler(x)
        if noise_sampler is None
        else noise_sampler
    )

    for i in trange(len(sigmas) - 1, disable=disable):
        if (
            not pipeline
            and hasattr(app_instance.app, "interrupt_flag")
            and app_instance.app.interrupt_flag
        ):
            return x

        if not pipeline:
            app_instance.app.progress.set(i / (len(sigmas) - 1))

        # Combined model inference and step calculation
        denoised = model(x, sigmas[i] * s_in, **(extra_args or {}))
        sigma_down, sigma_up = sampling_util.get_ancestral_step(
            sigmas[i], sigmas[i + 1], eta=eta
        )

        # Fused update step
        x = x + util.to_d(x, sigmas[i], denoised) * (sigma_down - sigmas[i])
        if sigmas[i + 1] > 0:
            x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up

        if callback is not None:
            callback({"x": x, "i": i, "sigma": sigmas[i], "denoised": denoised})

        if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0:
            threading.Thread(target=taesd.taesd_preview, args=(x,)).start()

    return x


@torch.no_grad()
def sample_euler(

    model,

    x,

    sigmas,

    extra_args=None,

    callback=None,

    disable=None,

    s_churn=0.0,

    s_tmin=0.0,

    s_tmax=float("inf"),

    s_noise=1.0,

    pipeline=False,

):
    # Pre-calculate common values
    device = x.device
    global disable_gui
    disable_gui = pipeline

    if not disable_gui:
        from modules.AutoEncoders import taesd
        from modules.user import app_instance

    # Pre-allocate tensors and cache parameters
    s_in = torch.ones((x.shape[0],), device=device)
    gamma_max = min(s_churn / (len(sigmas) - 1), 2**0.5 - 1) if s_churn > 0 else 0

    for i in trange(len(sigmas) - 1, disable=disable):
        if (
            not pipeline
            and hasattr(app_instance.app, "interrupt_flag")
            and app_instance.app.interrupt_flag
        ):
            return x

        if not pipeline:
            app_instance.app.progress.set(i / (len(sigmas) - 1))

        # Combined sigma calculation and update
        sigma_hat = (
            sigmas[i] * (1 + (gamma_max if s_tmin <= sigmas[i] <= s_tmax else 0))
            if gamma_max > 0
            else sigmas[i]
        )

        if gamma_max > 0 and sigma_hat > sigmas[i]:
            x = (
                x
                + torch.randn_like(x) * s_noise * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
            )

        # Fused model inference and update step
        denoised = model(x, sigma_hat * s_in, **(extra_args or {}))
        x = x + util.to_d(x, sigma_hat, denoised) * (sigmas[i + 1] - sigma_hat)

        if callback is not None:
            callback(
                {
                    "x": x,
                    "i": i,
                    "sigma": sigmas[i],
                    "sigma_hat": sigma_hat,
                    "denoised": denoised,
                }
            )

        if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0:
            threading.Thread(target=taesd.taesd_preview, args=(x, True)).start()

    return x


class Rescaler:
    def __init__(self, model, x, mode, **extra_args):
        self.model = model
        self.x = x
        self.mode = mode
        self.extra_args = extra_args

        self.latent_image, self.noise = model.latent_image, model.noise
        self.denoise_mask = self.extra_args.get("denoise_mask", None)

    def __enter__(self):
        if self.latent_image is not None:
            self.model.latent_image = torch.nn.functional.interpolate(
                input=self.latent_image, size=self.x.shape[2:4], mode=self.mode
            )
        if self.noise is not None:
            self.model.noise = torch.nn.functional.interpolate(
                input=self.latent_image, size=self.x.shape[2:4], mode=self.mode
            )
        if self.denoise_mask is not None:
            self.extra_args["denoise_mask"] = torch.nn.functional.interpolate(
                input=self.denoise_mask, size=self.x.shape[2:4], mode=self.mode
            )

        return self

    def __exit__(self, type, value, traceback):
        del self.model.latent_image, self.model.noise
        self.model.latent_image, self.model.noise = self.latent_image, self.noise


@torch.no_grad()
def dy_sampling_step_cfg_pp(

    x,

    model,

    sigma_next,

    i,

    sigma,

    sigma_hat,

    callback,

    current_cfg=7.5,

    cfg_x0_scale=1.0,

    **extra_args,

):
    """Dynamic sampling step with proper CFG++ handling"""
    # Track both conditional and unconditional denoised outputs
    uncond_denoised = None
    old_uncond_denoised = None

    def post_cfg_function(args):
        nonlocal uncond_denoised
        uncond_denoised = args["uncond_denoised"]
        return args["denoised"]

    model_options = extra_args.get("model_options", {}).copy()
    extra_args["model_options"] = set_model_options_post_cfg_function(
        model_options, post_cfg_function, disable_cfg1_optimization=True
    )

    # Process image in lower resolution
    original_shape = x.shape
    batch_size, channels, m, n = (
        original_shape[0],
        original_shape[1],
        original_shape[2] // 2,
        original_shape[3] // 2,
    )
    extra_row = x.shape[2] % 2 == 1
    extra_col = x.shape[3] % 2 == 1

    if extra_row:
        extra_row_content = x[:, :, -1:, :]
        x = x[:, :, :-1, :]
    if extra_col:
        extra_col_content = x[:, :, :, -1:]
        x = x[:, :, :, :-1]

    a_list = (
        x.unfold(2, 2, 2)
        .unfold(3, 2, 2)
        .contiguous()
        .view(batch_size, channels, m * n, 2, 2)
    )
    c = a_list[:, :, :, 1, 1].view(batch_size, channels, m, n)

    with Rescaler(model, c, "nearest-exact", **extra_args) as rescaler:
        denoised = model(c, sigma_hat * c.new_ones([c.shape[0]]), **rescaler.extra_args)

    if callback is not None:
        callback(
            {
                "x": c,
                "i": i,
                "sigma": sigma,
                "sigma_hat": sigma_hat,
                "denoised": denoised,
            }
        )

    # Apply proper CFG++ calculation
    if old_uncond_denoised is None:
        # First step - regular CFG
        cfg_denoised = uncond_denoised + (denoised - uncond_denoised) * current_cfg
    else:
        # CFG++ with momentum
        momentum = denoised
        uncond_momentum = uncond_denoised
        x0_coeff = cfg_x0_scale * current_cfg

        # Combined CFG++ update
        cfg_denoised = uncond_momentum + (momentum - uncond_momentum) * x0_coeff

    # Apply proper noise prediction and update
    d = util.to_d(c, sigma_hat, cfg_denoised)
    c = c + d * (sigma_next - sigma_hat)

    # Store updated pixels back in the original tensor
    d_list = c.view(batch_size, channels, m * n, 1, 1)
    a_list[:, :, :, 1, 1] = d_list[:, :, :, 0, 0]
    x = (
        a_list.view(batch_size, channels, m, n, 2, 2)
        .permute(0, 1, 2, 4, 3, 5)
        .reshape(batch_size, channels, 2 * m, 2 * n)
    )

    if extra_row or extra_col:
        x_expanded = torch.zeros(original_shape, dtype=x.dtype, device=x.device)
        x_expanded[:, :, : 2 * m, : 2 * n] = x
        if extra_row:
            x_expanded[:, :, -1:, : 2 * n + 1] = extra_row_content
        if extra_col:
            x_expanded[:, :, : 2 * m, -1:] = extra_col_content
        if extra_row and extra_col:
            x_expanded[:, :, -1:, -1:] = extra_col_content[:, :, -1:, :]
        x = x_expanded

    return x


@torch.no_grad()
def sample_euler_dy_cfg_pp(

    model,

    x,

    sigmas,

    extra_args=None,

    callback=None,

    disable=None,

    s_churn=0.0,

    s_tmin=0.0,

    s_tmax=float("inf"),

    s_noise=1.0,

    s_gamma_start=0.0,

    s_gamma_end=0.0,

    s_extra_steps=True,

    pipeline=False,

    # CFG++ parameters

    cfg_scale=7.5,

    cfg_x0_scale=1.0,

    cfg_s_scale=1.0,

    cfg_min=1.0,

    **kwargs,

):
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    gamma_start = (
        round(s_gamma_start)
        if s_gamma_start > 1.0
        else (len(sigmas) - 1) * s_gamma_start
    )
    gamma_end = (
        round(s_gamma_end) if s_gamma_end > 1.0 else (len(sigmas) - 1) * s_gamma_end
    )
    n_steps = len(sigmas) - 1

    # CFG++ scheduling
    def get_cfg_scale(step):
        # Linear scheduling from cfg_scale to cfg_min
        progress = step / n_steps
        return cfg_scale + (cfg_min - cfg_scale) * progress

    old_uncond_denoised = None

    def post_cfg_function(args):
        nonlocal old_uncond_denoised
        old_uncond_denoised = args["uncond_denoised"]
        return args["denoised"]

    model_options = extra_args.get("model_options", {}).copy()
    extra_args["model_options"] = set_model_options_post_cfg_function(
        model_options, post_cfg_function, disable_cfg1_optimization=True
    )

    global disable_gui
    disable_gui = pipeline

    if not disable_gui:
        from modules.AutoEncoders import taesd
        from modules.user import app_instance

    for i in trange(len(sigmas) - 1, disable=disable):
        if (
            not pipeline
            and hasattr(app_instance.app, "interrupt_flag")
            and app_instance.app.interrupt_flag
        ):
            return x

        if not pipeline:
            app_instance.app.progress.set(i / (len(sigmas) - 1))

        # Get current CFG scale
        current_cfg = get_cfg_scale(i)

        gamma = (
            max(s_churn / (len(sigmas) - 1), 2**0.5 - 1)
            if gamma_start <= i < gamma_end and s_tmin <= sigmas[i] <= s_tmax
            else 0.0
        )
        sigma_hat = sigmas[i] * (gamma + 1)

        if gamma > 0:
            eps = torch.randn_like(x) * s_noise
            x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5

        denoised = model(x, sigma_hat * s_in, **extra_args)
        uncond_denoised = extra_args.get("model_options", {}).get(
            "sampler_post_cfg_function", []
        )[-1]({"denoised": denoised, "uncond_denoised": None})

        if callback is not None:
            callback(
                {
                    "x": x,
                    "i": i,
                    "sigma": sigmas[i],
                    "sigma_hat": sigma_hat,
                    "denoised": denoised,
                    "cfg_scale": current_cfg,
                }
            )

        # CFG++ calculation
        if old_uncond_denoised is None:
            # First step - regular CFG
            cfg_denoised = uncond_denoised + (denoised - uncond_denoised) * current_cfg
        else:
            # CFG++ with momentum
            x0_coeff = cfg_x0_scale * current_cfg

            # Simple momentum for Euler
            momentum = denoised
            uncond_momentum = uncond_denoised

            # Combined CFG++ update
            cfg_denoised = uncond_momentum + (momentum - uncond_momentum) * x0_coeff

        # Euler method with CFG++ denoised result
        d = util.to_d(x, sigma_hat, cfg_denoised)
        x = x + d * (sigmas[i + 1] - sigma_hat)

        # Store for momentum calculation
        old_uncond_denoised = uncond_denoised

        # Extra dynamic steps - pass the current CFG scale and predictions
        if sigmas[i + 1] > 0 and s_extra_steps:
            if i // 2 == 1:
                x = dy_sampling_step_cfg_pp(
                    x,
                    model,
                    sigmas[i + 1],
                    i,
                    sigmas[i],
                    sigma_hat,
                    callback,
                    current_cfg=current_cfg,  # Pass current CFG scale
                    cfg_x0_scale=cfg_x0_scale,  # Pass CFG++ x0 coefficient
                    **extra_args,
                )

        if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0:
            threading.Thread(target=taesd.taesd_preview, args=(x,)).start()

    return x


@torch.no_grad()
def sample_euler_ancestral_dy_cfg_pp(

    model,

    x,

    sigmas,

    extra_args=None,

    callback=None,

    disable=None,

    eta=1.0,

    s_noise=1.0,

    noise_sampler=None,

    s_gamma_start=0.0,

    s_gamma_end=0.0,

    pipeline=False,

    # CFG++ parameters

    cfg_scale=7.5,

    cfg_x0_scale=1.0,

    cfg_s_scale=1.0,

    cfg_min=1.0,

    **kwargs,

):
    extra_args = {} if extra_args is None else extra_args
    noise_sampler = (
        sampling_util.default_noise_sampler(x)
        if noise_sampler is None
        else noise_sampler
    )
    gamma_start = (
        round(s_gamma_start)
        if s_gamma_start > 1.0
        else (len(sigmas) - 1) * s_gamma_start
    )
    gamma_end = (
        round(s_gamma_end) if s_gamma_end > 1.0 else (len(sigmas) - 1) * s_gamma_end
    )
    n_steps = len(sigmas) - 1

    # CFG++ scheduling
    def get_cfg_scale(step):
        # Linear scheduling from cfg_scale to cfg_min
        progress = step / n_steps
        return cfg_scale + (cfg_min - cfg_scale) * progress

    old_uncond_denoised = None

    def post_cfg_function(args):
        nonlocal old_uncond_denoised
        old_uncond_denoised = args["uncond_denoised"]
        return args["denoised"]

    model_options = extra_args.get("model_options", {}).copy()
    extra_args["model_options"] = set_model_options_post_cfg_function(
        model_options, post_cfg_function, disable_cfg1_optimization=True
    )

    global disable_gui
    disable_gui = pipeline

    if not disable_gui:
        from modules.AutoEncoders import taesd
        from modules.user import app_instance

    s_in = x.new_ones([x.shape[0]])
    for i in trange(len(sigmas) - 1, disable=disable):
        if (
            not pipeline
            and hasattr(app_instance.app, "interrupt_flag")
            and app_instance.app.interrupt_flag
        ):
            return x

        if not pipeline:
            app_instance.app.progress.set(i / (len(sigmas) - 1))

        # Get current CFG scale
        current_cfg = get_cfg_scale(i)

        gamma = 2**0.5 - 1 if gamma_start <= i < gamma_end else 0.0
        sigma_hat = sigmas[i] * (gamma + 1)

        if gamma > 0:
            eps = torch.randn_like(x) * s_noise
            x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5

        denoised = model(x, sigma_hat * s_in, **extra_args)
        uncond_denoised = extra_args.get("model_options", {}).get(
            "sampler_post_cfg_function", []
        )[-1]({"denoised": denoised, "uncond_denoised": None})

        sigma_down, sigma_up = sampling_util.get_ancestral_step(
            sigmas[i], sigmas[i + 1], eta=eta
        )

        if callback is not None:
            callback(
                {
                    "x": x,
                    "i": i,
                    "sigma": sigmas[i],
                    "sigma_hat": sigma_hat,
                    "denoised": denoised,
                    "cfg_scale": current_cfg,
                }
            )

        # CFG++ calculation
        if old_uncond_denoised is None or sigmas[i + 1] == 0:
            # First step or last step - regular CFG
            cfg_denoised = uncond_denoised + (denoised - uncond_denoised) * current_cfg
        else:
            # CFG++ with momentum
            x0_coeff = cfg_x0_scale * current_cfg

            # Simple momentum for Euler Ancestral
            momentum = denoised
            uncond_momentum = uncond_denoised

            # Combined CFG++ update
            cfg_denoised = uncond_momentum + (momentum - uncond_momentum) * x0_coeff

        # Euler ancestral method with CFG++ denoised result
        d = util.to_d(x, sigma_hat, cfg_denoised)
        x = x + d * (sigma_down - sigma_hat)

        if sigmas[i + 1] > 0:
            x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up

        # Store for momentum calculation
        old_uncond_denoised = uncond_denoised

        if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0:
            threading.Thread(target=taesd.taesd_preview, args=(x,)).start()

    return x


def set_model_options_post_cfg_function(

    model_options, post_cfg_function, disable_cfg1_optimization=False

):
    model_options["sampler_post_cfg_function"] = model_options.get(
        "sampler_post_cfg_function", []
    ) + [post_cfg_function]
    if disable_cfg1_optimization:
        model_options["disable_cfg1_optimization"] = True
    return model_options


@torch.no_grad()
def sample_dpmpp_2m_cfgpp(

    model,

    x,

    sigmas,

    extra_args=None,

    callback=None,

    disable=None,

    pipeline=False,

    # CFG++ parameters

    cfg_scale=7.5,

    cfg_x0_scale=1.0,

    cfg_s_scale=1.0,

    cfg_min=1.0,

):
    """DPM-Solver++(2M) sampler with CFG++ optimizations"""
    # Pre-calculate common values and setup
    device = x.device
    global disable_gui
    disable_gui = pipeline

    if not disable_gui:
        from modules.AutoEncoders import taesd
        from modules.user import app_instance

    # Pre-allocate tensors and transform sigmas
    s_in = torch.ones((x.shape[0],), device=device)
    t_steps = -torch.log(sigmas)  # Fused calculation
    n_steps = len(sigmas) - 1

    # Pre-calculate all needed values in one go
    sigma_steps = torch.exp(-t_steps)  # Fused calculation
    ratios = sigma_steps[1:] / sigma_steps[:-1]
    h_steps = t_steps[1:] - t_steps[:-1]

    # Pre-calculate CFG schedule for the entire sampling process
    steps = torch.arange(n_steps, device=device)
    cfg_values = cfg_scale + (cfg_min - cfg_scale) * (steps / n_steps)

    old_denoised = None
    old_uncond_denoised = None
    extra_args = {} if extra_args is None else extra_args

    # Define post-CFG function once outside the loop
    def post_cfg_function(args):
        nonlocal old_uncond_denoised
        old_uncond_denoised = args["uncond_denoised"]
        return args["denoised"]

    model_options = extra_args.get("model_options", {}).copy()
    extra_args["model_options"] = set_model_options_post_cfg_function(
        model_options, post_cfg_function, disable_cfg1_optimization=True
    )

    for i in trange(n_steps, disable=disable):
        if (
            not pipeline
            and hasattr(app_instance.app, "interrupt_flag")
            and app_instance.app.interrupt_flag
        ):
            return x

        if not pipeline:
            app_instance.app.progress.set(i / n_steps)

        # Use pre-calculated CFG scale
        current_cfg = cfg_values[i]

        # Fused model inference and update calculations
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        uncond_denoised = extra_args.get("model_options", {}).get(
            "sampler_post_cfg_function", []
        )[-1]({"denoised": denoised, "uncond_denoised": None})

        if callback is not None:
            callback(
                {
                    "x": x,
                    "i": i,
                    "sigma": sigmas[i],
                    "sigma_hat": sigmas[i],
                    "denoised": denoised,
                    "cfg_scale": current_cfg,
                }
            )

        # CFG++ update step using optimized operations
        if old_uncond_denoised is None or sigmas[i + 1] == 0:
            # First step or last step - use torch.lerp for efficient interpolation
            cfg_denoised = torch.lerp(uncond_denoised, denoised, current_cfg)
        else:
            # Fused momentum calculations
            h_ratio = h_steps[i - 1] / (2 * h_steps[i])
            h_ratio_plus_1 = 1 + h_ratio

            # Use fused multiply-add operations for momentum terms
            momentum = torch.addcmul(denoised * h_ratio_plus_1, old_denoised, -h_ratio)
            uncond_momentum = torch.addcmul(
                uncond_denoised * h_ratio_plus_1, old_uncond_denoised, -h_ratio
            )

            # Optimized interpolation for CFG++ update
            cfg_denoised = torch.lerp(
                uncond_momentum, momentum, current_cfg * cfg_x0_scale
            )

        # Apply update with pre-calculated expm1
        h_expm1 = torch.expm1(-h_steps[i])
        x = ratios[i] * x - h_expm1 * cfg_denoised

        old_denoised = denoised
        old_uncond_denoised = uncond_denoised

        # Preview updates
        if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0:
            threading.Thread(target=taesd.taesd_preview, args=(x,)).start()

    return x


@torch.no_grad()
def sample_dpmpp_sde_cfgpp(

    model,

    x,

    sigmas,

    extra_args=None,

    callback=None,

    disable=None,

    eta=1.0,

    s_noise=1.0,

    noise_sampler=None,

    r=1 / 2,

    pipeline=False,

    seed=None,

    # CFG++ parameters

    cfg_scale=7.5,

    cfg_x0_scale=1.0,

    cfg_s_scale=1.0,

    cfg_min=1.0,

):
    """DPM-Solver++ (SDE) with CFG++ optimizations"""
    # Pre-calculate common values
    device = x.device
    global disable_gui
    disable_gui = pipeline

    if not disable_gui:
        from modules.AutoEncoders import taesd
        from modules.user import app_instance

    # Early return check
    if len(sigmas) <= 1:
        return x

    # Pre-allocate tensors and values
    s_in = torch.ones((x.shape[0],), device=device)
    n_steps = len(sigmas) - 1
    extra_args = {} if extra_args is None else extra_args

    # CFG++ scheduling
    def get_cfg_scale(step):
        progress = step / n_steps
        return cfg_scale + (cfg_min - cfg_scale) * progress

    # Helper functions
    def sigma_fn(t):
        return (-t).exp()

    def t_fn(sigma):
        return -sigma.log()

    # Initialize noise sampler
    if noise_sampler is None:
        noise_sampler = sampling_util.BrownianTreeNoiseSampler(
            x, sigmas[sigmas > 0].min(), sigmas.max(), seed=seed, cpu=True
        )

    # Track previous predictions
    old_denoised = None
    old_uncond_denoised = None

    def post_cfg_function(args):
        nonlocal old_uncond_denoised
        old_uncond_denoised = args["uncond_denoised"]
        return args["denoised"]

    model_options = extra_args.get("model_options", {}).copy()
    extra_args["model_options"] = set_model_options_post_cfg_function(
        model_options, post_cfg_function, disable_cfg1_optimization=True
    )

    for i in trange(n_steps, disable=disable):
        if (
            not pipeline
            and hasattr(app_instance.app, "interrupt_flag")
            and app_instance.app.interrupt_flag
        ):
            return x

        if not pipeline:
            app_instance.app.progress.set(i / n_steps)

        # Get current CFG scale
        current_cfg = get_cfg_scale(i)

        # Model inference
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        uncond_denoised = extra_args.get("model_options", {}).get(
            "sampler_post_cfg_function", []
        )[-1]({"denoised": denoised, "uncond_denoised": None})

        if callback is not None:
            callback(
                {
                    "x": x,
                    "i": i,
                    "sigma": sigmas[i],
                    "denoised": denoised,
                    "cfg_scale": current_cfg,
                }
            )

        if sigmas[i + 1] == 0:
            # Final step - regular CFG
            cfg_denoised = uncond_denoised + (denoised - uncond_denoised) * current_cfg
            x = x + util.to_d(x, sigmas[i], cfg_denoised) * (sigmas[i + 1] - sigmas[i])
        else:
            # Two-step update with CFG++
            t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
            s = t + (t_next - t) * r

            # Step 1 with CFG++
            sd, su = sampling_util.get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
            s_ = t_fn(sd)

            if old_uncond_denoised is None:
                # First step - regular CFG
                cfg_denoised = (
                    uncond_denoised + (denoised - uncond_denoised) * current_cfg
                )
            else:
                # CFG++ with momentum
                x0_coeff = cfg_x0_scale * current_cfg

                # Calculate momentum terms
                h_ratio = (t - s_) / (2 * (t - t_next))
                momentum = (1 + h_ratio) * denoised - h_ratio * old_denoised
                uncond_momentum = (
                    1 + h_ratio
                ) * uncond_denoised - h_ratio * old_uncond_denoised

                # Combine with CFG++ scaling
                cfg_denoised = uncond_momentum + (momentum - uncond_momentum) * x0_coeff

            x_2 = (
                (sigma_fn(s_) / sigma_fn(t)) * x
                - (t - s_).expm1() * cfg_denoised
                + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
            )

            # Step 2 inference
            denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
            uncond_denoised_2 = extra_args.get("model_options", {}).get(
                "sampler_post_cfg_function", []
            )[-1]({"denoised": denoised_2, "uncond_denoised": None})

            # Step 2 CFG++ combination
            if old_uncond_denoised is None:
                cfg_denoised_2 = (
                    uncond_denoised_2 + (denoised_2 - uncond_denoised_2) * current_cfg
                )
            else:
                momentum_2 = (1 + h_ratio) * denoised_2 - h_ratio * denoised
                uncond_momentum_2 = (
                    1 + h_ratio
                ) * uncond_denoised_2 - h_ratio * uncond_denoised
                cfg_denoised_2 = (
                    uncond_momentum_2 + (momentum_2 - uncond_momentum_2) * x0_coeff
                )

            # Final ancestral step
            sd, su = sampling_util.get_ancestral_step(
                sigma_fn(t), sigma_fn(t_next), eta
            )
            t_next_ = t_fn(sd)

            # Combined update with both predictions
            x = (
                (sigma_fn(t_next_) / sigma_fn(t)) * x
                - (t - t_next_).expm1()
                * ((1 - 1 / (2 * r)) * cfg_denoised + (1 / (2 * r)) * cfg_denoised_2)
                + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
            )

        old_denoised = denoised
        old_uncond_denoised = uncond_denoised

        # Preview updates
        if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0:
            threading.Thread(target=taesd.taesd_preview, args=(x,)).start()

    return x