Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,060 Bytes
d9a2e19 1264e6e cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 |
import threading
import torch
from tqdm.auto import trange
from modules.Utilities import util
from modules.sample import sampling_util
disable_gui = False
@torch.no_grad()
def sample_euler_ancestral(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
eta=1.0,
s_noise=1.0,
noise_sampler=None,
pipeline=False,
):
# Pre-calculate common values
device = x.device
global disable_gui
disable_gui = pipeline
if not disable_gui:
from modules.AutoEncoders import taesd
from modules.user import app_instance
# Pre-allocate tensors and init noise sampler
s_in = torch.ones((x.shape[0],), device=device)
noise_sampler = (
sampling_util.default_noise_sampler(x)
if noise_sampler is None
else noise_sampler
)
for i in trange(len(sigmas) - 1, disable=disable):
if (
not pipeline
and hasattr(app_instance.app, "interrupt_flag")
and app_instance.app.interrupt_flag
):
return x
if not pipeline:
app_instance.app.progress.set(i / (len(sigmas) - 1))
# Combined model inference and step calculation
denoised = model(x, sigmas[i] * s_in, **(extra_args or {}))
sigma_down, sigma_up = sampling_util.get_ancestral_step(
sigmas[i], sigmas[i + 1], eta=eta
)
# Fused update step
x = x + util.to_d(x, sigmas[i], denoised) * (sigma_down - sigmas[i])
if sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
if callback is not None:
callback({"x": x, "i": i, "sigma": sigmas[i], "denoised": denoised})
if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0:
threading.Thread(target=taesd.taesd_preview, args=(x,)).start()
return x
@torch.no_grad()
def sample_euler(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
s_churn=0.0,
s_tmin=0.0,
s_tmax=float("inf"),
s_noise=1.0,
pipeline=False,
):
# Pre-calculate common values
device = x.device
global disable_gui
disable_gui = pipeline
if not disable_gui:
from modules.AutoEncoders import taesd
from modules.user import app_instance
# Pre-allocate tensors and cache parameters
s_in = torch.ones((x.shape[0],), device=device)
gamma_max = min(s_churn / (len(sigmas) - 1), 2**0.5 - 1) if s_churn > 0 else 0
for i in trange(len(sigmas) - 1, disable=disable):
if (
not pipeline
and hasattr(app_instance.app, "interrupt_flag")
and app_instance.app.interrupt_flag
):
return x
if not pipeline:
app_instance.app.progress.set(i / (len(sigmas) - 1))
# Combined sigma calculation and update
sigma_hat = (
sigmas[i] * (1 + (gamma_max if s_tmin <= sigmas[i] <= s_tmax else 0))
if gamma_max > 0
else sigmas[i]
)
if gamma_max > 0 and sigma_hat > sigmas[i]:
x = (
x
+ torch.randn_like(x) * s_noise * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
)
# Fused model inference and update step
denoised = model(x, sigma_hat * s_in, **(extra_args or {}))
x = x + util.to_d(x, sigma_hat, denoised) * (sigmas[i + 1] - sigma_hat)
if callback is not None:
callback(
{
"x": x,
"i": i,
"sigma": sigmas[i],
"sigma_hat": sigma_hat,
"denoised": denoised,
}
)
if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0:
threading.Thread(target=taesd.taesd_preview, args=(x, True)).start()
return x
class Rescaler:
def __init__(self, model, x, mode, **extra_args):
self.model = model
self.x = x
self.mode = mode
self.extra_args = extra_args
self.latent_image, self.noise = model.latent_image, model.noise
self.denoise_mask = self.extra_args.get("denoise_mask", None)
def __enter__(self):
if self.latent_image is not None:
self.model.latent_image = torch.nn.functional.interpolate(
input=self.latent_image, size=self.x.shape[2:4], mode=self.mode
)
if self.noise is not None:
self.model.noise = torch.nn.functional.interpolate(
input=self.latent_image, size=self.x.shape[2:4], mode=self.mode
)
if self.denoise_mask is not None:
self.extra_args["denoise_mask"] = torch.nn.functional.interpolate(
input=self.denoise_mask, size=self.x.shape[2:4], mode=self.mode
)
return self
def __exit__(self, type, value, traceback):
del self.model.latent_image, self.model.noise
self.model.latent_image, self.model.noise = self.latent_image, self.noise
@torch.no_grad()
def dy_sampling_step_cfg_pp(
x,
model,
sigma_next,
i,
sigma,
sigma_hat,
callback,
current_cfg=7.5,
cfg_x0_scale=1.0,
**extra_args,
):
"""Dynamic sampling step with proper CFG++ handling"""
# Track both conditional and unconditional denoised outputs
uncond_denoised = None
old_uncond_denoised = None
def post_cfg_function(args):
nonlocal uncond_denoised
uncond_denoised = args["uncond_denoised"]
return args["denoised"]
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = set_model_options_post_cfg_function(
model_options, post_cfg_function, disable_cfg1_optimization=True
)
# Process image in lower resolution
original_shape = x.shape
batch_size, channels, m, n = (
original_shape[0],
original_shape[1],
original_shape[2] // 2,
original_shape[3] // 2,
)
extra_row = x.shape[2] % 2 == 1
extra_col = x.shape[3] % 2 == 1
if extra_row:
extra_row_content = x[:, :, -1:, :]
x = x[:, :, :-1, :]
if extra_col:
extra_col_content = x[:, :, :, -1:]
x = x[:, :, :, :-1]
a_list = (
x.unfold(2, 2, 2)
.unfold(3, 2, 2)
.contiguous()
.view(batch_size, channels, m * n, 2, 2)
)
c = a_list[:, :, :, 1, 1].view(batch_size, channels, m, n)
with Rescaler(model, c, "nearest-exact", **extra_args) as rescaler:
denoised = model(c, sigma_hat * c.new_ones([c.shape[0]]), **rescaler.extra_args)
if callback is not None:
callback(
{
"x": c,
"i": i,
"sigma": sigma,
"sigma_hat": sigma_hat,
"denoised": denoised,
}
)
# Apply proper CFG++ calculation
if old_uncond_denoised is None:
# First step - regular CFG
cfg_denoised = uncond_denoised + (denoised - uncond_denoised) * current_cfg
else:
# CFG++ with momentum
momentum = denoised
uncond_momentum = uncond_denoised
x0_coeff = cfg_x0_scale * current_cfg
# Combined CFG++ update
cfg_denoised = uncond_momentum + (momentum - uncond_momentum) * x0_coeff
# Apply proper noise prediction and update
d = util.to_d(c, sigma_hat, cfg_denoised)
c = c + d * (sigma_next - sigma_hat)
# Store updated pixels back in the original tensor
d_list = c.view(batch_size, channels, m * n, 1, 1)
a_list[:, :, :, 1, 1] = d_list[:, :, :, 0, 0]
x = (
a_list.view(batch_size, channels, m, n, 2, 2)
.permute(0, 1, 2, 4, 3, 5)
.reshape(batch_size, channels, 2 * m, 2 * n)
)
if extra_row or extra_col:
x_expanded = torch.zeros(original_shape, dtype=x.dtype, device=x.device)
x_expanded[:, :, : 2 * m, : 2 * n] = x
if extra_row:
x_expanded[:, :, -1:, : 2 * n + 1] = extra_row_content
if extra_col:
x_expanded[:, :, : 2 * m, -1:] = extra_col_content
if extra_row and extra_col:
x_expanded[:, :, -1:, -1:] = extra_col_content[:, :, -1:, :]
x = x_expanded
return x
@torch.no_grad()
def sample_euler_dy_cfg_pp(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
s_churn=0.0,
s_tmin=0.0,
s_tmax=float("inf"),
s_noise=1.0,
s_gamma_start=0.0,
s_gamma_end=0.0,
s_extra_steps=True,
pipeline=False,
# CFG++ parameters
cfg_scale=7.5,
cfg_x0_scale=1.0,
cfg_s_scale=1.0,
cfg_min=1.0,
**kwargs,
):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
gamma_start = (
round(s_gamma_start)
if s_gamma_start > 1.0
else (len(sigmas) - 1) * s_gamma_start
)
gamma_end = (
round(s_gamma_end) if s_gamma_end > 1.0 else (len(sigmas) - 1) * s_gamma_end
)
n_steps = len(sigmas) - 1
# CFG++ scheduling
def get_cfg_scale(step):
# Linear scheduling from cfg_scale to cfg_min
progress = step / n_steps
return cfg_scale + (cfg_min - cfg_scale) * progress
old_uncond_denoised = None
def post_cfg_function(args):
nonlocal old_uncond_denoised
old_uncond_denoised = args["uncond_denoised"]
return args["denoised"]
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = set_model_options_post_cfg_function(
model_options, post_cfg_function, disable_cfg1_optimization=True
)
global disable_gui
disable_gui = pipeline
if not disable_gui:
from modules.AutoEncoders import taesd
from modules.user import app_instance
for i in trange(len(sigmas) - 1, disable=disable):
if (
not pipeline
and hasattr(app_instance.app, "interrupt_flag")
and app_instance.app.interrupt_flag
):
return x
if not pipeline:
app_instance.app.progress.set(i / (len(sigmas) - 1))
# Get current CFG scale
current_cfg = get_cfg_scale(i)
gamma = (
max(s_churn / (len(sigmas) - 1), 2**0.5 - 1)
if gamma_start <= i < gamma_end and s_tmin <= sigmas[i] <= s_tmax
else 0.0
)
sigma_hat = sigmas[i] * (gamma + 1)
if gamma > 0:
eps = torch.randn_like(x) * s_noise
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
uncond_denoised = extra_args.get("model_options", {}).get(
"sampler_post_cfg_function", []
)[-1]({"denoised": denoised, "uncond_denoised": None})
if callback is not None:
callback(
{
"x": x,
"i": i,
"sigma": sigmas[i],
"sigma_hat": sigma_hat,
"denoised": denoised,
"cfg_scale": current_cfg,
}
)
# CFG++ calculation
if old_uncond_denoised is None:
# First step - regular CFG
cfg_denoised = uncond_denoised + (denoised - uncond_denoised) * current_cfg
else:
# CFG++ with momentum
x0_coeff = cfg_x0_scale * current_cfg
# Simple momentum for Euler
momentum = denoised
uncond_momentum = uncond_denoised
# Combined CFG++ update
cfg_denoised = uncond_momentum + (momentum - uncond_momentum) * x0_coeff
# Euler method with CFG++ denoised result
d = util.to_d(x, sigma_hat, cfg_denoised)
x = x + d * (sigmas[i + 1] - sigma_hat)
# Store for momentum calculation
old_uncond_denoised = uncond_denoised
# Extra dynamic steps - pass the current CFG scale and predictions
if sigmas[i + 1] > 0 and s_extra_steps:
if i // 2 == 1:
x = dy_sampling_step_cfg_pp(
x,
model,
sigmas[i + 1],
i,
sigmas[i],
sigma_hat,
callback,
current_cfg=current_cfg, # Pass current CFG scale
cfg_x0_scale=cfg_x0_scale, # Pass CFG++ x0 coefficient
**extra_args,
)
if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0:
threading.Thread(target=taesd.taesd_preview, args=(x,)).start()
return x
@torch.no_grad()
def sample_euler_ancestral_dy_cfg_pp(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
eta=1.0,
s_noise=1.0,
noise_sampler=None,
s_gamma_start=0.0,
s_gamma_end=0.0,
pipeline=False,
# CFG++ parameters
cfg_scale=7.5,
cfg_x0_scale=1.0,
cfg_s_scale=1.0,
cfg_min=1.0,
**kwargs,
):
extra_args = {} if extra_args is None else extra_args
noise_sampler = (
sampling_util.default_noise_sampler(x)
if noise_sampler is None
else noise_sampler
)
gamma_start = (
round(s_gamma_start)
if s_gamma_start > 1.0
else (len(sigmas) - 1) * s_gamma_start
)
gamma_end = (
round(s_gamma_end) if s_gamma_end > 1.0 else (len(sigmas) - 1) * s_gamma_end
)
n_steps = len(sigmas) - 1
# CFG++ scheduling
def get_cfg_scale(step):
# Linear scheduling from cfg_scale to cfg_min
progress = step / n_steps
return cfg_scale + (cfg_min - cfg_scale) * progress
old_uncond_denoised = None
def post_cfg_function(args):
nonlocal old_uncond_denoised
old_uncond_denoised = args["uncond_denoised"]
return args["denoised"]
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = set_model_options_post_cfg_function(
model_options, post_cfg_function, disable_cfg1_optimization=True
)
global disable_gui
disable_gui = pipeline
if not disable_gui:
from modules.AutoEncoders import taesd
from modules.user import app_instance
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
if (
not pipeline
and hasattr(app_instance.app, "interrupt_flag")
and app_instance.app.interrupt_flag
):
return x
if not pipeline:
app_instance.app.progress.set(i / (len(sigmas) - 1))
# Get current CFG scale
current_cfg = get_cfg_scale(i)
gamma = 2**0.5 - 1 if gamma_start <= i < gamma_end else 0.0
sigma_hat = sigmas[i] * (gamma + 1)
if gamma > 0:
eps = torch.randn_like(x) * s_noise
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
uncond_denoised = extra_args.get("model_options", {}).get(
"sampler_post_cfg_function", []
)[-1]({"denoised": denoised, "uncond_denoised": None})
sigma_down, sigma_up = sampling_util.get_ancestral_step(
sigmas[i], sigmas[i + 1], eta=eta
)
if callback is not None:
callback(
{
"x": x,
"i": i,
"sigma": sigmas[i],
"sigma_hat": sigma_hat,
"denoised": denoised,
"cfg_scale": current_cfg,
}
)
# CFG++ calculation
if old_uncond_denoised is None or sigmas[i + 1] == 0:
# First step or last step - regular CFG
cfg_denoised = uncond_denoised + (denoised - uncond_denoised) * current_cfg
else:
# CFG++ with momentum
x0_coeff = cfg_x0_scale * current_cfg
# Simple momentum for Euler Ancestral
momentum = denoised
uncond_momentum = uncond_denoised
# Combined CFG++ update
cfg_denoised = uncond_momentum + (momentum - uncond_momentum) * x0_coeff
# Euler ancestral method with CFG++ denoised result
d = util.to_d(x, sigma_hat, cfg_denoised)
x = x + d * (sigma_down - sigma_hat)
if sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
# Store for momentum calculation
old_uncond_denoised = uncond_denoised
if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0:
threading.Thread(target=taesd.taesd_preview, args=(x,)).start()
return x
def set_model_options_post_cfg_function(
model_options, post_cfg_function, disable_cfg1_optimization=False
):
model_options["sampler_post_cfg_function"] = model_options.get(
"sampler_post_cfg_function", []
) + [post_cfg_function]
if disable_cfg1_optimization:
model_options["disable_cfg1_optimization"] = True
return model_options
@torch.no_grad()
def sample_dpmpp_2m_cfgpp(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
pipeline=False,
# CFG++ parameters
cfg_scale=7.5,
cfg_x0_scale=1.0,
cfg_s_scale=1.0,
cfg_min=1.0,
):
"""DPM-Solver++(2M) sampler with CFG++ optimizations"""
# Pre-calculate common values and setup
device = x.device
global disable_gui
disable_gui = pipeline
if not disable_gui:
from modules.AutoEncoders import taesd
from modules.user import app_instance
# Pre-allocate tensors and transform sigmas
s_in = torch.ones((x.shape[0],), device=device)
t_steps = -torch.log(sigmas) # Fused calculation
n_steps = len(sigmas) - 1
# Pre-calculate all needed values in one go
sigma_steps = torch.exp(-t_steps) # Fused calculation
ratios = sigma_steps[1:] / sigma_steps[:-1]
h_steps = t_steps[1:] - t_steps[:-1]
# Pre-calculate CFG schedule for the entire sampling process
steps = torch.arange(n_steps, device=device)
cfg_values = cfg_scale + (cfg_min - cfg_scale) * (steps / n_steps)
old_denoised = None
old_uncond_denoised = None
extra_args = {} if extra_args is None else extra_args
# Define post-CFG function once outside the loop
def post_cfg_function(args):
nonlocal old_uncond_denoised
old_uncond_denoised = args["uncond_denoised"]
return args["denoised"]
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = set_model_options_post_cfg_function(
model_options, post_cfg_function, disable_cfg1_optimization=True
)
for i in trange(n_steps, disable=disable):
if (
not pipeline
and hasattr(app_instance.app, "interrupt_flag")
and app_instance.app.interrupt_flag
):
return x
if not pipeline:
app_instance.app.progress.set(i / n_steps)
# Use pre-calculated CFG scale
current_cfg = cfg_values[i]
# Fused model inference and update calculations
denoised = model(x, sigmas[i] * s_in, **extra_args)
uncond_denoised = extra_args.get("model_options", {}).get(
"sampler_post_cfg_function", []
)[-1]({"denoised": denoised, "uncond_denoised": None})
if callback is not None:
callback(
{
"x": x,
"i": i,
"sigma": sigmas[i],
"sigma_hat": sigmas[i],
"denoised": denoised,
"cfg_scale": current_cfg,
}
)
# CFG++ update step using optimized operations
if old_uncond_denoised is None or sigmas[i + 1] == 0:
# First step or last step - use torch.lerp for efficient interpolation
cfg_denoised = torch.lerp(uncond_denoised, denoised, current_cfg)
else:
# Fused momentum calculations
h_ratio = h_steps[i - 1] / (2 * h_steps[i])
h_ratio_plus_1 = 1 + h_ratio
# Use fused multiply-add operations for momentum terms
momentum = torch.addcmul(denoised * h_ratio_plus_1, old_denoised, -h_ratio)
uncond_momentum = torch.addcmul(
uncond_denoised * h_ratio_plus_1, old_uncond_denoised, -h_ratio
)
# Optimized interpolation for CFG++ update
cfg_denoised = torch.lerp(
uncond_momentum, momentum, current_cfg * cfg_x0_scale
)
# Apply update with pre-calculated expm1
h_expm1 = torch.expm1(-h_steps[i])
x = ratios[i] * x - h_expm1 * cfg_denoised
old_denoised = denoised
old_uncond_denoised = uncond_denoised
# Preview updates
if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0:
threading.Thread(target=taesd.taesd_preview, args=(x,)).start()
return x
@torch.no_grad()
def sample_dpmpp_sde_cfgpp(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
eta=1.0,
s_noise=1.0,
noise_sampler=None,
r=1 / 2,
pipeline=False,
seed=None,
# CFG++ parameters
cfg_scale=7.5,
cfg_x0_scale=1.0,
cfg_s_scale=1.0,
cfg_min=1.0,
):
"""DPM-Solver++ (SDE) with CFG++ optimizations"""
# Pre-calculate common values
device = x.device
global disable_gui
disable_gui = pipeline
if not disable_gui:
from modules.AutoEncoders import taesd
from modules.user import app_instance
# Early return check
if len(sigmas) <= 1:
return x
# Pre-allocate tensors and values
s_in = torch.ones((x.shape[0],), device=device)
n_steps = len(sigmas) - 1
extra_args = {} if extra_args is None else extra_args
# CFG++ scheduling
def get_cfg_scale(step):
progress = step / n_steps
return cfg_scale + (cfg_min - cfg_scale) * progress
# Helper functions
def sigma_fn(t):
return (-t).exp()
def t_fn(sigma):
return -sigma.log()
# Initialize noise sampler
if noise_sampler is None:
noise_sampler = sampling_util.BrownianTreeNoiseSampler(
x, sigmas[sigmas > 0].min(), sigmas.max(), seed=seed, cpu=True
)
# Track previous predictions
old_denoised = None
old_uncond_denoised = None
def post_cfg_function(args):
nonlocal old_uncond_denoised
old_uncond_denoised = args["uncond_denoised"]
return args["denoised"]
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = set_model_options_post_cfg_function(
model_options, post_cfg_function, disable_cfg1_optimization=True
)
for i in trange(n_steps, disable=disable):
if (
not pipeline
and hasattr(app_instance.app, "interrupt_flag")
and app_instance.app.interrupt_flag
):
return x
if not pipeline:
app_instance.app.progress.set(i / n_steps)
# Get current CFG scale
current_cfg = get_cfg_scale(i)
# Model inference
denoised = model(x, sigmas[i] * s_in, **extra_args)
uncond_denoised = extra_args.get("model_options", {}).get(
"sampler_post_cfg_function", []
)[-1]({"denoised": denoised, "uncond_denoised": None})
if callback is not None:
callback(
{
"x": x,
"i": i,
"sigma": sigmas[i],
"denoised": denoised,
"cfg_scale": current_cfg,
}
)
if sigmas[i + 1] == 0:
# Final step - regular CFG
cfg_denoised = uncond_denoised + (denoised - uncond_denoised) * current_cfg
x = x + util.to_d(x, sigmas[i], cfg_denoised) * (sigmas[i + 1] - sigmas[i])
else:
# Two-step update with CFG++
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
s = t + (t_next - t) * r
# Step 1 with CFG++
sd, su = sampling_util.get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
s_ = t_fn(sd)
if old_uncond_denoised is None:
# First step - regular CFG
cfg_denoised = (
uncond_denoised + (denoised - uncond_denoised) * current_cfg
)
else:
# CFG++ with momentum
x0_coeff = cfg_x0_scale * current_cfg
# Calculate momentum terms
h_ratio = (t - s_) / (2 * (t - t_next))
momentum = (1 + h_ratio) * denoised - h_ratio * old_denoised
uncond_momentum = (
1 + h_ratio
) * uncond_denoised - h_ratio * old_uncond_denoised
# Combine with CFG++ scaling
cfg_denoised = uncond_momentum + (momentum - uncond_momentum) * x0_coeff
x_2 = (
(sigma_fn(s_) / sigma_fn(t)) * x
- (t - s_).expm1() * cfg_denoised
+ noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
)
# Step 2 inference
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
uncond_denoised_2 = extra_args.get("model_options", {}).get(
"sampler_post_cfg_function", []
)[-1]({"denoised": denoised_2, "uncond_denoised": None})
# Step 2 CFG++ combination
if old_uncond_denoised is None:
cfg_denoised_2 = (
uncond_denoised_2 + (denoised_2 - uncond_denoised_2) * current_cfg
)
else:
momentum_2 = (1 + h_ratio) * denoised_2 - h_ratio * denoised
uncond_momentum_2 = (
1 + h_ratio
) * uncond_denoised_2 - h_ratio * uncond_denoised
cfg_denoised_2 = (
uncond_momentum_2 + (momentum_2 - uncond_momentum_2) * x0_coeff
)
# Final ancestral step
sd, su = sampling_util.get_ancestral_step(
sigma_fn(t), sigma_fn(t_next), eta
)
t_next_ = t_fn(sd)
# Combined update with both predictions
x = (
(sigma_fn(t_next_) / sigma_fn(t)) * x
- (t - t_next_).expm1()
* ((1 - 1 / (2 * r)) * cfg_denoised + (1 / (2 * r)) * cfg_denoised_2)
+ noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
)
old_denoised = denoised
old_uncond_denoised = uncond_denoised
# Preview updates
if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0:
threading.Thread(target=taesd.taesd_preview, args=(x,)).start()
return x
|