File size: 690 Bytes
ba9015d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import gradio as gr
from transformers import pipeline
import torch
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
import requests
from PIL import Image
from torchvision import transforms

response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")

def predict(inp):
  inp = transforms.ToTensor()(inp).unsqueeze(0)
  with torch.no_grad():
    prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
    confidences = {labels[i]: float(prediction[i]) for i in range(1000)}    
  return confidences
gr.Interface(fn=predict, 
             inputs=gr.Image(type="pil"),
             outputs=gr.Label(num_top_classes=3)).launch()