File size: 43,652 Bytes
2f92c41
 
62a8ed8
2f92c41
 
9019f12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41a7276
2f92c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a30dea2
 
 
2f92c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f1f37
2f92c41
 
 
 
 
 
 
 
29f1f37
2f92c41
 
 
29f1f37
a832fed
 
2f92c41
 
 
 
 
 
29f1f37
 
 
 
 
 
 
 
 
 
2f92c41
29f1f37
 
 
 
 
 
 
 
 
 
 
 
 
2f92c41
29f1f37
2f92c41
29f1f37
 
 
 
 
 
 
2f92c41
29f1f37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f92c41
29f1f37
 
2f92c41
 
 
 
 
 
29f1f37
2f92c41
 
29f1f37
2f92c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e33175f
2f92c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f1f37
 
2f92c41
 
 
 
41a7276
29f1f37
2f92c41
 
29f1f37
2f92c41
29f1f37
 
a832fed
2f92c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0967f04
 
 
2f92c41
 
 
 
 
 
 
 
eea3bae
2f92c41
 
 
29f1f37
2f92c41
 
29f1f37
2f92c41
 
29f1f37
2f92c41
 
 
 
 
 
 
 
dd23fcc
41de865
31c394f
 
 
2f92c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
# app.py (second app by claude)
import gradio as gr
import torch

# ==================================================================================-
# inference code part-1
# -------------------------------------------------
# 1. Download the model weights (from huggingface)
# -------------------------------------------------
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="Aananda-giri/LLAMA3-Nepali", filename="parameters_300m/model_pg_398000_steps.pth", local_dir="./")

# ----------------------
# 2. Load The tokenizer
# ----------------------
from transformers import PreTrainedTokenizerFast

# Load the tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained("Aananda-giri/LLAMA3-Nepali")
tokenizer.save_pretrained("NepaliBPE")


# Llama 3.2 ~300M Scaled Version
LLAMA32_CONFIG = {
    "vocab_size": 50006,       # <len(tokenizer.tokenizer)=50006> 128_256 reduced vocabulary size
    "context_length": 512,      # 131_072 reduced Context length (unrelated to model size but higheer context length consumes more RAM)
    "emb_dim": 1320,            # 2048 reduced Embedding dimension
    "n_heads": 20,              # 32 reduced Number of attention heads
    "n_layers": 10,             # 16 reduced Number of layers
    "hidden_dim": 5280,         # 8192 Size of the intermediate dimension in FeedForward
    "n_kv_groups": 5,           # 8 Key-Value groups for grouped-query attention
    "rope_base": 500_000.0,     # 500_000 The base in RoPE's "theta"
    "dtype": torch.bfloat16,    # Lower-precision dtype to reduce memory usage
    "rope_freq": {              # RoPE frequency scaling
        "factor": 32.0,
        "low_freq_factor": 1.0,
        "high_freq_factor": 4.0,
        "original_context_length": 8192,
    }
}


# ==================================================================================-
# ==================================================================================-
# ==================================================================================-
# ==================================================================================-
# could not make importing from previous_chapters.py work, so i copied the all code
# from previous_chapters.py here

# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
#   - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch

# This file collects all the relevant code that we covered thus far
# throughout Chapters 2-4.
# This file can be run as a standalone script.

import json

# modified from `import tiktoken`
from transformers import PreTrainedTokenizerFast


import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator

# modified. added for create_dataloader_v2
from datasets import load_dataset


#####################################
# 1. Dataloader
#####################################

def create_dataloader_v3(batch_size, shuffle=True, drop_last=True, num_workers=0):
    '''
    modified.
    * parameter: text removed
    * parameters: max_length and stride removed : they were set during preparing tokenized_datasets
    * parameter: context_length removed (as dataset is pre-tokenized)
    '''
    print('downloading dataset...')
    # Download the whole dataset
    base_url = "https://huggingface.co/datasets/Aananda-giri/nepali_llm_datasets/resolve/main/pre_tokenized/"
    # data_files = {"train": base_url + "nepberta_" + str(context_length) + ".parquet"}
    
    # previous version: stride = .75*512, context_len.512
    # data_files = {
    #     "train": base_url + "iriisnepal_u_nepberta_train_512.parquet",
    #     "test": base_url + "iriisnepal_u_nepberta_test_512.parquet"
    #     }
    
    # context_len.512, stride=512
    data_files={"train": base_url + "iriis_u_nepbert_512_512_train.parquet", "validation": base_url + "iriis_u_nepbert_512_512_test.parquet"}
    dataset = load_dataset("parquet", data_files=data_files, cache_dir='hf_cache', streaming=True)
    
    print(dataset)

    # and split it later
    # dataset = dataset.train_test_split(train_size=train_ratio, seed=42)
    # Convert Hugging Face Dataset to PyTorch tensors (we can directly use the dataset as it is already in the correct format)
    # dataset.set_format(type="torch", columns=['input_ids,target_ids'])  # Directly set columns to torch tensors



    # Define the custom collate_fn function
    def collate_fn(batch):
        # Extract the 'input_ids' and 'target_ids' from the batch and return them as a list of tensors
        input_ids = []
        target_ids = []
        for data_item in batch:
            splitted_data_item = data_item['input_ids,target_ids'].split("\",")
            input_ids.append(torch.tensor(json.loads(splitted_data_item[0].replace('\"',''))))
            # print(f'input_ids: {type(input_ids)} {input_ids}')
            target_ids.append(torch.tensor(json.loads(splitted_data_item[1].replace('\"',''))))
            # print(f'target_ids: {type(target_ids)} {target_ids}')

        # Convert to tensors (if not already)
        input_ids_tensor = torch.stack(input_ids)
        target_ids_tensor = torch.stack(target_ids)

        return [input_ids_tensor, target_ids_tensor]

    
    # Creating the DataLoader for the 'train' split of the dataset with the custom collate_fn
    train_loader = DataLoader(
        dataset['train'],
        batch_size=batch_size,
        shuffle=shuffle,
        drop_last=drop_last,
        num_workers=num_workers,
        collate_fn=collate_fn
    )

    val_loader =  DataLoader(
        dataset['validation'],
        batch_size=batch_size,
        shuffle=shuffle,
        drop_last=drop_last,
        num_workers=num_workers,
        collate_fn=collate_fn
    )

    return train_loader, val_loader




#####################################
# 2. Architecture Code
#####################################
import torch
import torch.nn as nn


class FeedForward(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
        self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
        self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False)

    def forward(self, x):
        x_fc1 = self.fc1(x)
        x_fc2 = self.fc2(x)
        x = nn.functional.silu(x_fc1) * x_fc2
        return self.fc3(x)

def precompute_rope_params(head_dim, theta_base=10_000, context_length=4096, freq_config=None):
    assert head_dim % 2 == 0, "Embedding dimension must be even"

    # Compute the inverse frequencies
    inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2)[: (head_dim // 2)].float() / head_dim))

    # Frequency adjustments
    if freq_config is not None:
        low_freq_wavelen = freq_config["original_context_length"] / freq_config["low_freq_factor"]
        high_freq_wavelen = freq_config["original_context_length"] / freq_config["high_freq_factor"]

        wavelen = 2 * torch.pi / inv_freq

        inv_freq_llama = torch.where(
            wavelen > low_freq_wavelen, inv_freq / freq_config["factor"], inv_freq
        )

        smooth_factor = (freq_config["original_context_length"] / wavelen - freq_config["low_freq_factor"]) / (
            freq_config["high_freq_factor"] - freq_config["low_freq_factor"]
        )

        smoothed_inv_freq = (
            (1 - smooth_factor) * (inv_freq / freq_config["factor"]) + smooth_factor * inv_freq
        )

        is_medium_freq = (wavelen <= low_freq_wavelen) & (wavelen >= high_freq_wavelen)
        inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
        inv_freq = inv_freq_llama

    # Generate position indices
    positions = torch.arange(context_length)

    # Compute the angles
    angles = positions[:, None] * inv_freq[None, :]  # Shape: (context_length, head_dim // 2)

    # Expand angles to match the head_dim
    angles = torch.cat([angles, angles], dim=1)  # Shape: (context_length, head_dim)

    # Precompute sine and cosine
    cos = torch.cos(angles)
    sin = torch.sin(angles)

    return cos, sin


def compute_rope(x, cos, sin):
    # x: (batch_size, num_heads, seq_len, head_dim)
    batch_size, num_heads, seq_len, head_dim = x.shape
    assert head_dim % 2 == 0, "Head dimension must be even"

    # Split x into first half and second half
    x1 = x[..., : head_dim // 2]  # First half
    x2 = x[..., head_dim // 2 :]  # Second half

    # Adjust sin and cos shapes
    cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0)  # Shape: (1, 1, seq_len, head_dim)
    sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0)

    # Apply the rotary transformation
    rotated = torch.cat((-x2, x1), dim=-1)
    x_rotated = (x * cos) + (rotated * sin)

    return x_rotated.to(dtype=x.dtype)

class SharedBuffers:
    _buffers = {}

    @staticmethod
    def get_buffers(context_length, head_dim, rope_base, freq_config, dtype=torch.float32):
        key = (context_length, head_dim, rope_base, tuple(freq_config.values()) if freq_config else freq_config, dtype)

        if key not in SharedBuffers._buffers:
            # Create or fetch the buffers
            mask = torch.triu(torch.ones(context_length, context_length), diagonal=1)
            cos, sin = precompute_rope_params(head_dim, rope_base, context_length, freq_config)
            if dtype is not None:
                cos = cos.to(dtype)
                sin = sin.to(dtype)
            SharedBuffers._buffers[key] = (mask, cos, sin)

        return SharedBuffers._buffers[key]


class GroupedQueryAttention(nn.Module):
    def __init__(
            self, d_in, d_out, context_length, num_heads,
            num_kv_groups,
            rope_base=10_000,
            rope_config=None,
            dtype=None
        ):
        super().__init__()
        assert d_out % num_heads == 0, f"d_out:{d_out} must be divisible by num_heads:{num_heads}"
        assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups"

        self.d_out = d_out
        self.num_heads = num_heads
        self.head_dim = d_out // num_heads

        self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
        self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
        self.num_kv_groups = num_kv_groups
        self.group_size = num_heads // num_kv_groups

        self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype)
        self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype)

        # Fetch buffers using SharedBuffers
        mask, cos, sin = SharedBuffers.get_buffers(context_length, self.head_dim, rope_base, rope_config, dtype)
        self.register_buffer("mask", mask)

        self.register_buffer("cos", cos)
        self.register_buffer("sin", sin)

    def forward(self, x):
        b, num_tokens, d_in = x.shape

        queries = self.W_query(x)  # Shape: (b, num_tokens, d_out)
        keys = self.W_key(x)  # Shape: (b, num_tokens, num_kv_groups * head_dim)
        values = self.W_value(x)  # Shape: (b, num_tokens, num_kv_groups * head_dim)

        # Reshape queries, keys, and values
        queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
        keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim)
        values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim)

        # Transpose keys, values, and queries
        keys = keys.transpose(1, 2)  # Shape: (b, num_heads, num_tokens, head_dim)
        values = values.transpose(1, 2)  # Shape: (b, num_heads, num_tokens, head_dim)
        queries = queries.transpose(1, 2)  # Shape: (b, num_query_groups, num_tokens, head_dim)

        # Apply RoPE
        keys = compute_rope(keys, self.cos, self.sin)
        queries = compute_rope(queries, self.cos, self.sin)

        # Expand keys and values to match the number of heads
        # Shape: (b, num_heads, num_tokens, head_dim)
        keys = keys.repeat_interleave(self.group_size, dim=1)  # Shape: (b, num_heads, num_tokens, head_dim)
        values = values.repeat_interleave(self.group_size, dim=1)  # Shape: (b, num_heads, num_tokens, head_dim)
        # For example, before repeat_interleave along dim=1 (query groups):
        #   [K1, K2]
        # After repeat_interleave (each query group is repeated group_size times):
        #   [K1, K1, K2, K2]
        # If we used regular repeat instead of repeat_interleave, we'd get:
        #   [K1, K2, K1, K2]

        # Compute scaled dot-product attention (aka self-attention) with a causal mask
        # Shape: (b, num_heads, num_tokens, num_tokens)
        attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head

        # Original mask truncated to the number of tokens and converted to boolean
        mask_bool = self.mask.bool()[:num_tokens, :num_tokens]

        # Use the mask to fill attention scores
        attn_scores.masked_fill_(mask_bool, -torch.inf)

        attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
        assert keys.shape[-1] == self.head_dim

        # Shape: (b, num_tokens, num_heads, head_dim)
        context_vec = (attn_weights @ values).transpose(1, 2)

        # Combine heads, where self.d_out = self.num_heads * self.head_dim
        context_vec = context_vec.reshape(b, num_tokens, self.d_out)
        context_vec = self.out_proj(context_vec)  # optional projection

        return context_vec

class TransformerBlock(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.att =  GroupedQueryAttention(
            d_in=cfg["emb_dim"],
            d_out=cfg["emb_dim"],
            context_length=cfg["context_length"],
            num_heads=cfg["n_heads"],
            num_kv_groups=cfg["n_kv_groups"],
            rope_base=cfg["rope_base"],
            rope_config=cfg["rope_freq"],
            dtype=cfg["dtype"]
        )
        self.ff = FeedForward(cfg)
        self.norm1 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5)
        self.norm2 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5)

    def forward(self, x):
        # Shortcut connection for attention block
        shortcut = x
        x = self.norm1(x)
        x = self.att(x.to(torch.bfloat16))   # Shape [batch_size, num_tokens, emb_size]
        x = x + shortcut  # Add the original input back

        # Shortcut connection for feed-forward block
        shortcut = x
        x = self.norm2(x)
        x = self.ff(x.to(torch.bfloat16))
        x = x + shortcut  # Add the original input back

        return x

class Llama3Model(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"])

        self.trf_blocks = nn.Sequential(
            *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])

        self.final_norm = nn.RMSNorm(cfg["emb_dim"], eps=1e-5)
        self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])

    def forward(self, in_idx):
        tok_embeds = self.tok_emb(in_idx)
        x = tok_embeds
        x = self.trf_blocks(x)
        x = self.final_norm(x)
        logits = self.out_head(x.to(torch.bfloat16))
        return logits

#####################################
# 3. Load Tokenizer
#####################################



import os

from transformers import PreTrainedTokenizerFast
class Tokenizer:
    def __init__(self, tokenizer_model_path):
        assert os.path.isfile(tokenizer_model_path), f"Tokenizer Model file {tokenizer_model_path} not found"
        
        # load the tokenizehere
        self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=tokenizer_model_path)
        
        # previously added
        # self.special_tokens = {
        #     "<|begin_of_text|>": 128000,
        #     "<|end_of_text|>": 128001,
        #     "<|start_header_id|>": 128006,
        #     "<|end_header_id|>": 128007,
        #     "<|eot_id|>": 128009,
        # }
        

        
    def encode(self, text, bos=False, eos=False):
        '''
        parameter: allowed_special removed
        parameter: disallowed_special removed
        '''
        if bos:
            # tokens = [self.special_tokens["<|begin_of_text|>"]]
            tokens = self.tokenizer.encode('<|begin_of_text|>') # [50000]
        else:
            tokens = []

        tokens += self.tokenizer.encode(text)

        if eos:
            # tokens.append(self.special_tokens["<|end_of_text|>"])
            tokens.append(self.tokenizer.encode('<|end_of_text|>')[0]) # [50001]
        return tokens

    def decode(self, tokens):
        # return self.model.decode(tokens)
        return self.tokenizer.decode(tokens)


class ChatFormat:
    def __init__(self, tokenizer):
        self.tokenizer = tokenizer

    def encode_header(self, message):
        tokens = []
        tokens.append(self.tokenizer.tokenizer.encode('<|start_header_id|>')[0]) # 50002
        tokens.extend(self.tokenizer.encode(message["भूमिका"], bos=False, eos=False))
        tokens.append(self.tokenizer.tokenizer.encode('<|end_header_id|>')[0])
        tokens.extend(self.tokenizer.encode("\n\n", bos=False, eos=False))
        # tokens.append(self.tokenizer.special_tokens["<|start_header_id|>"])
        # tokens.extend(self.tokenizer.encode(message["role"], bos=False, eos=False))
        # tokens.append(self.tokenizer.special_tokens["<|end_header_id|>"])
        # tokens.extend(self.tokenizer.encode("\n\n", bos=False, eos=False))
        return tokens

    def encode(self, text):
        message = {
            "भूमिका": "प्रयोगकर्ता",
            "सन्दर्भ": text
        }

        tokens = self.encode_header(message)
        tokens.extend(
            self.tokenizer.encode(message["सन्दर्भ"].strip(), bos=False, eos=False)
        )
        # tokens.append(self.tokenizer.special_tokens["<|eot_id|>"])
        tokens.append(self.tokenizer.tokenizer.encode('<|eot_id|>')[0])
        return tokens

    def decode(self, token_ids):
        return self.tokenizer.decode(token_ids)


_tokenizer = Tokenizer("NepaliBPE/tokenizer.json")
chat_tokenizer = ChatFormat(_tokenizer)

# text = "नेपाल विद्युत प्राधिकरणका कार्यकारी निर्देशक कुलमान घिसिङले माथिल्लो अरुण जलविद्युत आयोजना विश्व बैंक र एडीबीबाट वित्तीय व्यवस्थापन नभए नेपाली जनताको लगानीमा बनाउने तयारी रहेको बताएका छन् ।"
# # normal tokenizer
# print([tokenizer.tokenizer.decode([token]) for token in tokenizer.encode(text)])

# # formatted tokenizer
# print([tokenizer.tokenizer.decode([token]) for token in chat_tokenizer.encode(text)])


#####################################
# 4. Generate Text
####################################
def text_to_token_ids(text, tokenizer):
    encoded = tokenizer.encode(text)
    encoded_tensor = torch.tensor(encoded).unsqueeze(0)  # add batch dimension
    return encoded_tensor
    # '''
    #   we have modified above return statement by sebastian because there are no tokens like 'start_header_id', 'end_header_id' and tokenizer is returning None which inturn is giving error
    #   TODO: add special tokens: 'start_header_id', 'end_header_id' and uncomment above return statement
    # '''
    # print(encoded_tensor)
    # return torch.tensor([token for token in encoded_tensor])  # TODO: use additional vocab like encoded_tensor


def token_ids_to_text(token_ids, tokenizer):
    flat = token_ids.squeeze(0)  # remove batch dimension
    return tokenizer.decode(flat.tolist())


def generate(model, idx, max_new_tokens, context_length, temperature=0.0, top_k=None, eos_id=None):

    # For-loop is the same as before: Get logits, and only focus on last time step
    for _ in range(max_new_tokens):
        idx_cond = idx[:, -context_length:]
        with torch.no_grad():
            logits = model(idx_cond)
        logits = logits[:, -1, :]

        # New: Filter logits with top_k sampling
        if top_k is not None:
            # Keep only top_k values
            top_logits, _ = torch.topk(logits, top_k)
            min_val = top_logits[:, -1]
            logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)

        # New: Apply temperature scaling
        if temperature > 0.0:
            logits = logits / temperature

            # Apply softmax to get probabilities
            probs = torch.softmax(logits, dim=-1)  # (batch_size, context_len)

            # Sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1)  # (batch_size, 1)

        # Otherwise same as before: get idx of the vocab entry with the highest logits value
        else:
            idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch_size, 1)

        if idx_next == eos_id:  # Stop generating early if end-of-sequence token is encountered and eos_id is specified
            break

        # Same as before: append sampled index to the running sequence
        idx = torch.cat((idx, idx_next), dim=1)  # (batch_size, num_tokens+1)

    return idx

def generate_and_print_sample(PROMPT, tokenizer, chat_tokenizer, model, device, context_length):
    
    # PROMPT = "What do llamas eat?"
    # PROMPT="रामले भात"
    torch.manual_seed(123)

    # token_ids = generate(
    #     model=model,
    #     idx=text_to_token_ids(PROMPT, chat_tokenizer).to(device),
    #     max_new_tokens=150,
    #     context_length=context_length,
    #     temperature=0.5,
    #     top_k=1,
    #     eos_id=tokenizer.eos_token_id
    # )

    # output_text = token_ids_to_text(token_ids, tokenizer)
    
    
    # We have re-defined generate function below.
    output_text = generate(
        model=model,
        prompt=PROMPT,
        tokenizer=tokenizer,
        max_new_tokens=150,
        
    )

    
    print("Output text:\n", clean_text(output_text))

# -------------------------------------------------------------
# Generte sample text
# PROMPT = "लामा हरु ले के खान्छन् ?"

# torch.manual_seed(123)

# token_ids = generate(
#     model=model,
#     idx=text_to_token_ids(PROMPT, chat_tokenizer).to(device),
#     max_new_tokens=150,
#     context_size=LLAMA32_CONFIG["context_length"],
#     top_k=1,
#     temperature=0.
# )

# output_text = token_ids_to_text(token_ids, tokenizer)
# -------------------------------------------------------------

def clean_text(text, header_end="प्रयोगकर्ता <|end_header_id|>\n\n"):
    # Find the index of the first occurrence of "<|end_header_id|>"
    index = text.find(header_end)

    if index != -1:
        # Return the substring starting after "<|end_header_id|>"
        return text[index + len(header_end):].strip()  # Strip removes leading/trailing whitespace
    else:
        # If the token is not found, return the original text
        return text

# print("Output text:\n", clean_text(output_text))


##########################################################################
# Chapter 5 (keep everything as it is except `generate_and_print_sample` function)
########################################################################


def calc_loss_batch(input_batch, target_batch, model, device):
    input_batch, target_batch = input_batch.to(device), target_batch.to(device)
    logits = model(input_batch)
    loss = torch.nn.functional.cross_entropy(logits.flatten(0, 1), target_batch.flatten())
    return loss

def calc_loss_loader(data_loader, model, device, num_batches=None, len_data_loader=0):
    '''
        - parameter: len_data_loader=None <added to set len_data_loader since we cant calulate len(data_loader) of Iterable>
    '''
    total_loss = 0.

    if len_data_loader == 0:    # len(data_loader)
        return float("nan")
    elif num_batches is None:
        num_batches = len_data_loader
    else:
        num_batches = min(num_batches, len_data_loader)
    for i, (input_batch, target_batch) in enumerate(data_loader):
        if i < num_batches:
            loss = calc_loss_batch(input_batch, target_batch, model, device)
            total_loss += loss.item()
        else:
            break
    return total_loss / num_batches


def evaluate_model(model, train_loader, val_loader, device, eval_iter, len_train_loader=0, len_val_loader=0):
    model.eval()
    with torch.no_grad():
        train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter, len_data_loader = len_train_loader)
        val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter, len_data_loader = len_val_loader)
    model.train()
    return train_loss, val_loss

def generate(
    model,
    prompt,
    tokenizer,
    max_new_tokens,
    temperature=0.7,
    top_k=50,
    top_p=None,  # New parameter for nucleus sampling
    eos_id=None,
    repetition_penalty=1.2,
    penalize_len_below=50,
    context_size = 512
):
    # context_size = GPT_CONFIG_124M['context_length']
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    idx = text_to_token_ids(prompt, tokenizer).to(device)
    
    if not eos_id:
        encoded_endoftext = tokenizer.encode("<|endoftext|>")
        eos_id = encoded_endoftext[0] if encoded_endoftext else None

    token_freq = {}

    for step in range(max_new_tokens):
        idx_cond = idx[:, -context_size:]
        with torch.no_grad():
            logits = model(idx_cond)
        logits = logits[:, -1, :]

        # Apply repetition penalty
        for token_id in idx[0].tolist():
            if token_id in token_freq:
                logits[0, token_id] /= repetition_penalty
            else:
                token_freq[token_id] = 1
        
        # Penalize EOT token for shorter sequences
        if eos_id is not None and step < penalize_len_below:
            logits[0, eos_id] /= (penalize_len_below - step) / penalize_len_below

        # Apply temperature scaling
        if temperature > 0.0:
            logits = logits / temperature

        # Convert logits to probabilities
        probs = torch.softmax(logits, dim=-1)

        # Apply top-p (nucleus) sampling if specified
        if top_p:
            sorted_probs, sorted_indices = torch.sort(probs, descending=True)
            cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
            
            # Remove tokens with cumulative probability above the threshold
            sorted_indices_to_remove = cumulative_probs > top_p
            # Shift the indices to the right to keep also the first token above the threshold
            sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
            sorted_indices_to_remove[..., 0] = 0

            # Create a mask for indices to remove
            indices_to_remove = sorted_indices_to_remove.scatter(dim=-1, index=sorted_indices, src=sorted_indices_to_remove)
            probs = probs.masked_fill(indices_to_remove, 0.0)
            
            # Renormalize probabilities
            probs = probs / probs.sum(dim=-1, keepdim=True)

        # If top_p is None, apply top-k sampling
        elif top_k:
            top_probs, top_indices = torch.topk(probs, top_k)
            probs = torch.zeros_like(probs).scatter_(-1, top_indices, top_probs)
            # Renormalize probabilities
            probs = probs / probs.sum(dim=-1, keepdim=True)

        # Sample from the filtered distribution
        if temperature > 0.0:
            idx_next = torch.multinomial(probs, num_samples=1)
        else:
            idx_next = torch.argmax(probs, dim=-1, keepdim=True)

        if idx_next == eos_id:
            break

        idx = torch.cat((idx, idx_next), dim=1)
        text = token_ids_to_text(idx, tokenizer)

    return text


def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses, output_dir):
    fig, ax1 = plt.subplots()

    # Plot training and validation loss against epochs
    ax1.plot(epochs_seen, train_losses, label="Training loss")
    ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss")
    ax1.set_xlabel("Epochs")
    ax1.set_ylabel("Loss")
    ax1.legend(loc="upper right")
    ax1.xaxis.set_major_locator(MaxNLocator(integer=True))

    # Create a second x-axis for tokens seen
    ax2 = ax1.twiny()  # Create a second x-axis that shares the same y-axis
    ax2.plot(tokens_seen, train_losses, alpha=0)  # Invisible plot for aligning ticks
    ax2.set_xlabel("Tokens seen")

    fig.tight_layout()  # Adjust layout to make room
    plt.savefig(output_dir / "losses.pdf")



# --------------------------------------------------------------------------------
#     -------------------------- New Chat function ---------------------
# --------------------------------------------------------------------------------
def generate_chat_optimized(
    model,
    prompt,
    tokenizer,
    chat_tokenizer,
    max_new_tokens,
    context_size,
    temperature=0.7,
    top_k=50,
    top_p=None,
    eos_id=None,
    repetition_penalty=1.2,
    penalize_len_below=50,
    device=None,
    batch_size=1,  # Added parameter
    clean_the_text=True
):
    if device is None:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    idx = text_to_token_ids(prompt, chat_tokenizer).to(device)
    
    # Find EOS token once instead of checking every time
    if not eos_id:
        if "<|endoftext|>" in tokenizer.get_vocab():
            encoded_endoftext = tokenizer.encode("<|endoftext|>")
            eos_id = encoded_endoftext[0] if encoded_endoftext else None
        elif "<|eot_id|>" in tokenizer.get_vocab():
            encoded_endoftext = tokenizer.encode("<|eot_id|>")
            eos_id = encoded_endoftext[0] if encoded_endoftext else None
    
    # Pre-compute token frequencies for the initial context
    token_freq = {}
    for token_id in idx[0].tolist():
        if token_id in token_freq:
            token_freq[token_id] += 1
        else:
            token_freq[token_id] = 1
    
    # Process tokens in batches for efficiency
    with torch.no_grad():  # Move this outside the loop
        for step in range(0, max_new_tokens, batch_size):
            batch_end = min(step + batch_size, max_new_tokens)
            current_batch_size = batch_end - step
            
            idx_cond = idx[:, -context_size:]
            logits = model(idx_cond)
            logits = logits[:, -1, :]
            
            # Apply repetition penalty once for the batch
            for token_id in idx[0].tolist()[-current_batch_size:]:
                if token_id in token_freq:
                    token_freq[token_id] += 1
                    logits[0, token_id] /= repetition_penalty
                else:
                    token_freq[token_id] = 1
            
            # Process each token in the batch
            for i in range(current_batch_size):
                current_step = step + i
                
                # Penalize EOT token for shorter sequences
                current_logits = logits.clone()  # Work with a copy
                if eos_id is not None and current_step < penalize_len_below:
                    penalty_factor = 1.0 + (penalize_len_below - current_step) / penalize_len_below
                    current_logits[0, eos_id] /= penalty_factor
                
                # Apply temperature scaling
                if temperature > 0.0:
                    current_logits = current_logits / temperature
                
                # Convert logits to probabilities
                probs = torch.softmax(current_logits, dim=-1)
                
                # Apply sampling strategies
                if top_p and top_p > 0.0:
                    # Nucleus sampling implementation
                    sorted_probs, sorted_indices = torch.sort(probs, descending=True)
                    cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
                    
                    sorted_indices_to_remove = cumulative_probs > top_p
                    sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
                    sorted_indices_to_remove[..., 0] = 0
                    
                    indices_to_remove = sorted_indices_to_remove.scatter(dim=-1, index=sorted_indices, src=sorted_indices_to_remove)
                    probs = probs.masked_fill(indices_to_remove, 0.0)
                    probs = probs / (probs.sum(dim=-1, keepdim=True) + 1e-8)
                
                elif top_k and top_k > 0:
                    # Top-k sampling implementation
                    top_probs, top_indices = torch.topk(probs, min(top_k, probs.size(-1)))
                    probs = torch.zeros_like(probs).scatter_(-1, top_indices, top_probs)
                    probs = probs / (probs.sum(dim=-1, keepdim=True) + 1e-8)
                
                # Sample from the filtered distribution
                if temperature > 0.0:
                    idx_next = torch.multinomial(probs, num_samples=1)
                else:
                    idx_next = torch.argmax(probs, dim=-1, keepdim=True)
                
                # Add the next token to the sequence
                idx = torch.cat((idx, idx_next), dim=1)
                
                # Check for end of sequence token and break if needed
                if idx_next.item() == eos_id:
                    output_text = token_ids_to_text(idx, tokenizer)
                    if clean_the_text:
                        # Clean the output 
                        # cleaned_text = clean_chat_output(output_text)
                        cleaned_text = clean_text(output_text)
                        if '<|eot_id|>' in cleaned_text:
                            cleaned_text = cleaned_text.replace('<|eot_id|>','')
                        # print("Generated text:\n", cleaned_text)
                    
                        return cleaned_text
                    return output_text
    
    # Not end of text token. terminate early since it exceeds max_new_tokens
    output_text = token_ids_to_text(idx, tokenizer)
    if clean_the_text:
        # Clean the output 
        # cleaned_text = clean_chat_output(output_text)
        cleaned_text = clean_text(output_text)
        if '<|eot_id|>' in cleaned_text:
            cleaned_text = cleaned_text.replace('<|eot_id|>','')
        # print("Generated text:\n", cleaned_text)
    
        return cleaned_text
    return output_text
# ==================================================================================-
# ==================================================================================-
# ==================================================================================-
# ==================================================================================-
# ==================================================================================-


# =============================================
# =============================================
# =============================================
# Below is the Code to initialize the model
# =============================================
# =============================================
# =============================================
# import torch  # already imported

# from previous_chapters4 import (
#     Llama3Model,
#     ChatFormat,
#     Tokenizer,
#     generate_and_print_sample
# )



old_context_length = 131_072    # original context length of llama3.2 model
new_context_length = LLAMA32_CONFIG["context_length"]  # 512 our new context length

def rescale_theta(theta_old, context_length_old, context_length_new):
    # original linear scaling
    scaling_factor = context_length_new / context_length_old
    theta_new = theta_old * scaling_factor
    return theta_new

LLAMA32_CONFIG["rope_base"] = rescale_theta(
    LLAMA32_CONFIG["rope_base"],
    old_context_length,
    new_context_length
)

print("New RoPE theta (i.e. LLAMA32_CONFIG[\"rope_base\"]):", LLAMA32_CONFIG["rope_base"])

model = Llama3Model(LLAMA32_CONFIG)
# Todo: don't compile? (claude sonnet 3.7 said compiling would speed up inference speed)
# compile the model
if True:
    print("compiling the model... (takes a ~minute)")
    unoptimized_model = model
    model = torch.compile(model) # requires PyTorch 2.0

model.eval()    # eval mode

# Check buffers
# --------------
print('The following is expected to print True to confirm buffers are reused instead of being (wastefully) recreated:')
print(model.trf_blocks[0].att.mask is model.trf_blocks[-1].att.mask)
print(model.trf_blocks[0].att.cos is model.trf_blocks[-1].att.cos)
print(model.trf_blocks[0].att.sin is model.trf_blocks[-1].att.sin)

# Display number of parameters
# -----------------------------
total_params = sum(p.numel() for p in model.parameters())
print(f"Total number of parameters: {total_params:,}")
# Account for weight tying
total_params_normalized = total_params - model.tok_emb.weight.numel()
print(f"\nTotal number of unique parameters: {total_params_normalized:,}")

# Display model_memory_size
# -----------------------------------------------------------------------
def model_memory_size(model, input_dtype=torch.float32):
    total_params = 0
    total_grads = 0
    for param in model.parameters():
        # Calculate total number of elements per parameter
        param_size = param.numel()
        total_params += param_size
        # Check if gradients are stored for this parameter
        if param.requires_grad:
            total_grads += param_size

    # Calculate buffer size (non-parameters that require memory)
    total_buffers = sum(buf.numel() for buf in model.buffers())

    # Size in bytes = (Number of elements) * (Size of each element in bytes)
    # We assume parameters and gradients are stored in the same type as input dtype
    element_size = torch.tensor(0, dtype=input_dtype).element_size()
    total_memory_bytes = (total_params + total_grads + total_buffers) * element_size

    # Convert bytes to gigabytes
    total_memory_gb = total_memory_bytes / (1024**3)

    return total_memory_gb

print(f"float32 (PyTorch default): {model_memory_size(model, input_dtype=torch.float32):.2f} GB")
print(f"bfloat16: {model_memory_size(model, input_dtype=torch.bfloat16):.2f} GB")
# -----------------------------------------------------------------------

if torch.cuda.is_available():
    device = torch.device("cuda")
elif torch.backends.mps.is_available():
    device = torch.device("mps")
else:
    device = torch.device("cpu")

model.to(device)
print(f'device: {device}')

latest_model_checkpoint = "parameters_300m/model_pg_398000_steps.pth"

checkpoint = torch.load(latest_model_checkpoint, map_location=device, weights_only=False)

# modified (added model loading code)
model.load_state_dict(checkpoint["model_state_dict"])
# generate_and_print_sample(PROMPT="रामले भात", tokenizer=_tokenizer, chat_tokenizer=chat_tokenizer, model=model, device=device, context_length = LLAMA32_CONFIG["context_length"])

# from previous_chapters import generate_and_print_chat

# generated_text = generate_and_print_chat(
#     prompt="रामले भात",
#     tokenizer=tokenizer,
#     chat_tokenizer=chat_tokenizer,
#     model=model,
#     device=None,
#     max_new_tokens=150,
#     context_length=None,
#     temperature=0.1,
#     top_k=50,
#     top_p=0.9,
#     repetition_penalty=1.2,
#     clean_the_text=True
#     )
# print(generated_text)
# =============================================
# =============================================
# =============================================
def generate_text(prompt, max_new_tokens, top_k, top_p, temperature, repetition_penalty, penalize_len_below):
    return generate_chat_optimized(
        model=model,
        prompt=prompt,
        tokenizer=tokenizer,
        chat_tokenizer=chat_tokenizer,
        max_new_tokens=max_new_tokens,
        context_size=LLAMA32_CONFIG['context_length'],
        temperature=temperature,
        top_k=top_k,
        top_p=top_p,
        eos_id=None,
        repetition_penalty=repetition_penalty,
        penalize_len_below=penalize_len_below,
        device=device,
        batch_size=1
    )


css = """
    #bright-textbox {
        background-color: #ffeb3b; /* Bright yellow */
        color: #000000; /* Black text for contrast */
        border: 2px solid #fbc02d; /* Slightly darker yellow for the border */
        font-size: 16px;
        padding: 10px;
        border-radius: 5px;
    }
"""

# Create Gradio interface
with gr.Blocks(title="LLAMA3_Nepali_318M Text Generator", css=css) as interface:
    gr.Markdown("# LLAMA3_Nepali_318M Text Generator")
    gr.Markdown("Enter Nepali (नेपाली) text to generate content using the custom LLAMA3_Nepali_318M model.")
    
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(
                label="Prompt",
                placeholder="यहाँ नेपाली मा इन्पुट दिनु होस् ... (please Enter Nepali text here...)" #,
                # value="रामले भात"
       )
            max_tokens = gr.Slider(minimum=1, maximum=512, value=25, step=1, label="Max New Tokens")
            
            with gr.Row():
                with gr.Column():
                    temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.3, step=0.1, label="Temperature")
                    repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.2, step=0.1, label="Repetition Penalty")
                with gr.Column():
                    top_k = gr.Slider(minimum=0, maximum=100, value=5, step=1, label="Top K (set to 0 to use Top P)")
                    top_p = gr.Slider(minimum=0, maximum=1.0, value=0.9, step=0.05, label="Top P (set above 0 to use instead of Top K)")
            
            min_length = gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Minimum Length Penalty")
            generate_btn = gr.Button("Generate Text")
        
        with gr.Column():
            output = gr.Textbox(label="Generated Text", lines=10)
    
    # Add examples if you have any
    gr.Examples(
        examples=[
            # ["रामले भात", 25, 10, 0, 0.7, 1.2, 15],
            # ["नेपाल एउटा", 25, 10, 0.9, 0.5, 1.2, 10],
            ["नेपाल का वर्तमान प्रधानमन्त्री ", 25, 10, 0.4, 0.8, 1.2, 10],
            ["भारतीय  प्रधानमन्त्री  ", 25, 10, 0.9, 0.5, 1.2, 15],
            ["अमिरिकी रास्ट्रपति डोनाल्ड", 25, 10, 0.9, 0.6, 1.2, 15],
        ],
        inputs=[prompt, max_tokens, top_k, top_p, temperature, repetition_penalty, min_length],
        outputs=output,
        fn=generate_text,
        cache_examples=True,
    )
    
    generate_btn.click(
        fn=generate_text,
        inputs=[prompt, max_tokens, top_p, top_k, temperature, repetition_penalty, min_length],
        outputs=output
    )


interface.launch()