Spaces:
Runtime error
Runtime error
File size: 11,788 Bytes
72cd7c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import streamlit as st
st.set_page_config(layout="wide", page_icon=":hospital:")
st.set_option('deprecation.showPyplotGlobalUse', False)
import pandas as pd
import numpy as np
import seaborn as sns
import time
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
plt.style.use('default')
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, LabelEncoder, StandardScaler
from sklearn.metrics import precision_recall_fscore_support as score, mean_squared_error
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.decomposition import PCA
########################################################################################################################
start_time = time.time()
# Title for the webpage
tit1, tit2 = st.beta_columns((4, 1))
tit1.markdown("<h1 style='text-align: center;'><u>Activity/ Pain Prediction With Wearable Technology Data</u> </h1>",
unsafe_allow_html=True)
st.sidebar.title("Dataset and ML Classifiers")
dataset_select = st.sidebar.selectbox("Select Dataset: ", ('AppleWatch Data', "Fitbit Data"))
classifier_select = st.sidebar.selectbox("Select ML Classifier: ",
("Logistic Regression", "KNN", "SVM", "Decision Trees",
"Random Forest", "Gradient Boosting", "XGBoost"))
LE = LabelEncoder()
def get_dataset(dataset_select):
if dataset_select == "AppleWatch Data":
data = pd.read_csv(
"https://raw.githubusercontent.com/ajinkyalahade/PainPredictionProject/main/Data/data_applewatch.csv")
st.header("Activity Data Apple Watch")
return data
else:
data = pd.read_csv(
"https://raw.githubusercontent.com/ajinkyalahade/PainPredictionProject/main/Data/data_fitbit.csv")
st.header("Activity Data Fitbit Watch")
return data
data = get_dataset(dataset_select)
def selected_dataset(dataset_select):
if dataset_select == "AppleWatch Data":
X = data.drop(["activitytag"], axis=1)
Y = data.activitytag
return X, Y
elif dataset_select == "Fitbit Data":
X = data.drop(["tag"], axis=1)
Y = data.tag
return X, Y
X, Y = selected_dataset(dataset_select)
# Charts
def plot_op(dataset_select):
col1, col2 = st.beta_columns((1, 5))
plt.figure(figsize=(12, 3))
plt.title("Classes in 'Y'")
if dataset_select == "AppleWatch Data":
col1.write(Y)
sns.countplot(Y, palette='colorblind')
col2.pyplot()
elif dataset_select == "Fitbit Data":
col1.write(Y)
sns.countplot(Y, palette='colorblind')
col2.pyplot()
########################################################################################################################
st.write(data)
st.write("Shape of dataset: ", data.shape)
st.write("Number of classes: ", Y.nunique())
plot_op(dataset_select)
########################################################################################################################
def add_parameter_ui(clf_name):
params = {}
st.sidebar.write("Select Parameters: ")
if clf_name == "Logistic Regression":
R = st.sidebar.slider("Regularization", 0.1, 10.0, step=0.1)
MI = st.sidebar.slider("max_iter", 50, 400, step=50)
params["R"] = R
params["MI"] = MI
elif clf_name == "KNN":
K = st.sidebar.slider("n_neighbors", 1, 20)
params["K"] = K
elif clf_name == "SVM":
C = st.sidebar.slider("Regularization", 0.01, 10.0, step=0.01)
kernel = st.sidebar.selectbox("Kernel", ("linear", "poly", "rbf", "sigmoid", "precomputed"))
params["C"] = C
params["kernel"] = kernel
elif clf_name == "Decision Trees":
M = st.sidebar.slider("max_depth", 2, 20)
C = st.sidebar.selectbox("Criterion", ("gini", "entropy"))
SS = st.sidebar.slider("min_samples_split", 1, 10)
params["M"] = M
params["C"] = C
params["SS"] = SS
elif clf_name == "Random Forest":
N = st.sidebar.slider("n_estimators", 50, 500, step=50, value=100)
M = st.sidebar.slider("max_depth", 2, 20)
C = st.sidebar.selectbox("Criterion", ("gini", "entropy"))
params["N"] = N
params["M"] = M
params["C"] = C
elif clf_name == "Gradient Boosting":
N = st.sidebar.slider("n_estimators", 50, 500, step=50, value=100)
LR = st.sidebar.slider("Learning Rate", 0.01, 0.5)
L = st.sidebar.selectbox("Loss", ('deviance', 'exponential'))
M = st.sidebar.slider("max_depth", 2, 20)
params["N"] = N
params["LR"] = LR
params["L"] = L
params["M"] = M
elif clf_name == "XGBoost":
N = st.sidebar.slider("n_estimators", 50, 500, step=50, value=50)
LR = st.sidebar.slider("Learning Rate", 0.01, 0.5, value=0.1)
O = st.sidebar.selectbox("Objective", ('binary:logistic', 'reg:logistic', 'reg:squarederror', "reg:gamma"))
M = st.sidebar.slider("max_depth", 1, 20, value=6)
G = st.sidebar.slider("Gamma", 0, 10, value=5)
L = st.sidebar.slider("reg_lambda", 1.0, 5.0, step=0.1)
A = st.sidebar.slider("reg_alpha", 0.0, 5.0, step=0.1)
CS = st.sidebar.slider("colsample_bytree", 0.5, 1.0, step=0.1)
params["N"] = N
params["LR"] = LR
params["O"] = O
params["M"] = M
params["G"] = G
params["L"] = L
params["A"] = A
params["CS"] = CS
RS = st.sidebar.slider("Random State", 0, 100)
params["RS"] = RS
return params
params = add_parameter_ui(classifier_select)
# get classifier by selections above
def get_classifier(clf_name, params):
global clf
if clf_name == "Logistic Regression":
clf = LogisticRegression(C=params["R"], max_iter=params["MI"])
elif clf_name == "KNN":
clf = KNeighborsClassifier(n_neighbors=params["K"])
elif clf_name == "SVM":
clf = SVC(kernel=params["kernel"], C=params["C"])
elif clf_name == "Decision Trees":
clf = DecisionTreeClassifier(max_depth=params["M"], criterion=params["C"], min_impurity_split=params["SS"])
elif clf_name == "Random Forest":
clf = RandomForestClassifier(n_estimators=params["N"], max_depth=params["M"], criterion=params["C"])
elif clf_name == "Gradient Boosting":
clf = GradientBoostingClassifier(n_estimators=params["N"], learning_rate=params["LR"], loss=params["L"],
max_depth=params["M"])
elif clf_name == "XGBoost":
clf = XGBClassifier(booster="gbtree", n_estimators=params["N"], max_depth=params["M"],
learning_rate=params["LR"],
objective=params["O"], gamma=params["G"], reg_alpha=params["A"], reg_lambda=params["L"],
colsample_bytree=params["CS"])
return clf
clf = get_classifier(classifier_select, params)
########################################################################################################################
# get model trained
def model():
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33, random_state=42)
# MinMax Scaling / Normalization of data
Std_scaler = StandardScaler()
X_train = Std_scaler.fit_transform(X_train)
X_test = Std_scaler.transform(X_test)
clf.fit(X_train, Y_train)
Y_pred = clf.predict(X_test)
acc = accuracy_score(Y_test, Y_pred)
return Y_pred, Y_test
Y_pred, Y_test = model()
########################################################################################################################
# Plot Output
def compute(Y_pred, Y_test):
# Plot PCA
pca = PCA(2)
X_projected = pca.fit_transform(X)
x1 = X_projected[:, 0]
x2 = X_projected[:, 1]
plt.figure(figsize=(16, 8))
plt.scatter(x1, x2, c=Y, alpha=0.8, cmap="cividis")
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.colorbar()
st.pyplot()
c1, c2 = st.beta_columns((4, 3))
# Output plot
plt.figure(figsize=(12, 6))
plt.scatter(range(len(Y_pred)), Y_pred, color="blue", lw=5, label="Predictions")
plt.scatter(range(len(Y_test)), Y_test, color="red", label="Actual")
plt.title("Prediction Values vs Real Values")
plt.legend()
plt.grid(True)
c1.pyplot()
# Confusion Matrix
cm = confusion_matrix(Y_test, Y_pred)
class_label = ["High-Pain-risk", "Low-Pain-risk"]
df_cm = pd.DataFrame(cm, index=class_label, columns=class_label)
plt.figure(figsize=(12, 7.5))
sns.heatmap(df_cm, annot=True, cmap='Set1', linewidths=2, fmt='d')
plt.title("Confusion Matrix", fontsize=15)
plt.xlabel("Predicted")
plt.ylabel("True")
c2.pyplot()
# Calculate Metrics
acc = accuracy_score(Y_test, Y_pred)
mse = mean_squared_error(Y_test, Y_pred)
precision, recall, fscore, train_support = score(Y_test, Y_pred, pos_label=1, average='binary')
st.subheader("Metrics of the model: ")
st.text('Precision: {} \nRecall: {} \nF1-Score: {} \nAccuracy: {} %\nMean Squared Error: {}'.format(
round(precision, 3), round(recall, 3), round(fscore, 3), round((acc * 100), 3), round((mse), 3)))
st.markdown("<hr>", unsafe_allow_html=True)
st.header(f"1) Model for Prediction of {dataset_select}")
st.subheader(f"Classifier Used: {classifier_select}")
compute(Y_pred, Y_test)
# Execution Time
end_time = time.time()
st.info(f"Total execution time: {round((end_time - start_time), 4)} seconds")
# Get user values
def user_inputs_ui(da, data):
user_val = {}
if dataset_select == "Fitbit Data":
X = data.drop(["tag"], axis=1)
for col in X.columns:
name = col
col = st.number_input(col, abs(X[col].min() - round(X[col].std())), abs(X[col].max() + round(X[col].std())))
user_val[name] = round((col), 4)
elif dataset_select == "AppleWatch Data":
X = data.drop(["activitytag"], axis=1)
for col in X.columns:
name = col
col = st.number_input(col, abs(X[col].min() - round(X[col].std())), abs(X[col].max() + round(X[col].std())))
user_val[name] = col
return user_val
# User values
st.markdown("<hr>", unsafe_allow_html=True)
st.header("2) User Values")
with st.beta_expander("Learn More"):
st.markdown("""
Please fill in your data to see the results.<br>
<p style='color: red;'> 1 - High Risk </p> <p style='color: green;'> 0 - Low Risk </p>
""", unsafe_allow_html=True)
user_val = user_inputs_ui(dataset_select, data)
# @st.cache(suppress_st_warning=True)
def user_predict():
global U_pred
if dataset_select == "AppleWatch Data":
X = data.drop(["activitytag"], axis=1)
U_pred = clf.predict([[user_val[col] for col in X.columns]])
elif dataset_select == "Fitbit Data":
X = data.drop(["tag"], axis=1)
U_pred = clf.predict([[user_val[col] for col in X.columns]])
st.subheader("Your Status: ")
if U_pred == 0:
st.write(U_pred[0],
" - NOT A PAIN EVENT -- THIS IS NOT A PROFESSIONAL MEDICAL ADVISE - CONTACT YOUR PRIMARY CARE PROVIDER")
else:
st.write(U_pred[0],
"- POTENTIAL PAIN EVENT; PLEASE SEE YOUR DOCTOR -- THIS IS NOT A PROFESSIONAL MEDICAL ADVISE")
user_predict() # Predict the status of user.
|