ASNVS commited on
Commit
e37e0cd
·
verified ·
1 Parent(s): eef8fb4
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -5,6 +5,7 @@ from sklearn.model_selection import train_test_split
5
  from sklearn.preprocessing import LabelEncoder
6
  from sklearn.ensemble import RandomForestClassifier
7
  import joblib
 
8
 
9
  # Load and preprocess data
10
  def load_and_preprocess_data(filename):
@@ -38,8 +39,8 @@ joblib.dump(label_encoders, "label_encoders.pkl")
38
 
39
  # Prediction function
40
  def predict_colleges(category, gender, rank, region):
41
- if not isinstance(rank, (int, float)) or rank < 0:
42
- return "Invalid Rank: Please enter a valid positive number."
43
 
44
  # Load label encoders
45
  label_encoders = joblib.load("label_encoders.pkl")
@@ -77,7 +78,7 @@ demo = gr.Interface(
77
  inputs=[
78
  gr.Dropdown(choices=["OC", "BC", "SC", "ST"], label="Category"),
79
  gr.Radio(choices=["Male", "Female"], label="Gender"),
80
- gr.Number(label="Rank", precision=0), # Restrict to whole numbers only
81
  gr.Dropdown(choices=["AU", "SV"], label="Region")
82
  ],
83
  outputs=gr.Dataframe(headers=["College Name", "Branch"]),
@@ -85,4 +86,4 @@ demo = gr.Interface(
85
  description="Enter your details to predict all possible colleges and branches based on your rank."
86
  )
87
 
88
- demo.launch()
 
5
  from sklearn.preprocessing import LabelEncoder
6
  from sklearn.ensemble import RandomForestClassifier
7
  import joblib
8
+ import re
9
 
10
  # Load and preprocess data
11
  def load_and_preprocess_data(filename):
 
39
 
40
  # Prediction function
41
  def predict_colleges(category, gender, rank, region):
42
+ if not isinstance(rank, (int, float)) or rank < 0 or not re.match(r'^\d+$', str(rank)):
43
+ return "Invalid Rank: Please enter a valid positive integer without symbols."
44
 
45
  # Load label encoders
46
  label_encoders = joblib.load("label_encoders.pkl")
 
78
  inputs=[
79
  gr.Dropdown(choices=["OC", "BC", "SC", "ST"], label="Category"),
80
  gr.Radio(choices=["Male", "Female"], label="Gender"),
81
+ gr.Textbox(label="Rank", type="number"), # Restrict to number input
82
  gr.Dropdown(choices=["AU", "SV"], label="Region")
83
  ],
84
  outputs=gr.Dataframe(headers=["College Name", "Branch"]),
 
86
  description="Enter your details to predict all possible colleges and branches based on your rank."
87
  )
88
 
89
+ demo.launch()