Spaces:
Running
Running
shanmukakomal
commited on
Commit
·
846b098
1
Parent(s):
b44e52d
thecolleges
Browse files- college predictor.py +85 -0
- requirements.txt +0 -0
college predictor.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from sklearn.preprocessing import LabelEncoder
|
6 |
+
from sklearn.ensemble import RandomForestClassifier
|
7 |
+
import joblib
|
8 |
+
|
9 |
+
# Load and preprocess data
|
10 |
+
def load_and_preprocess_data(filename):
|
11 |
+
df = pd.read_csv(filename)
|
12 |
+
|
13 |
+
label_encoders = {}
|
14 |
+
for col in ["College Name", "Category", "Gender", "Branch", "Region"]:
|
15 |
+
le = LabelEncoder()
|
16 |
+
df[col] = le.fit_transform(df[col])
|
17 |
+
label_encoders[col] = le
|
18 |
+
|
19 |
+
X = df[["Category", "Gender", "Opening Rank", "Closing Rank", "Region"]]
|
20 |
+
y_college_branch = df[["College Name", "Branch"]]
|
21 |
+
|
22 |
+
return X, y_college_branch, label_encoders, df
|
23 |
+
|
24 |
+
filename = "AP_EAMCET_Engineering_10000 (1).csv"
|
25 |
+
X, y_college_branch, label_encoders, df = load_and_preprocess_data(filename)
|
26 |
+
|
27 |
+
# Train model
|
28 |
+
def train_model(X, y):
|
29 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
30 |
+
model = RandomForestClassifier(n_estimators=100, random_state=42)
|
31 |
+
model.fit(X_train, y_train)
|
32 |
+
return model
|
33 |
+
|
34 |
+
college_branch_model = train_model(X, y_college_branch)
|
35 |
+
|
36 |
+
joblib.dump(college_branch_model, "college_branch_model.pkl")
|
37 |
+
joblib.dump(label_encoders, "label_encoders.pkl")
|
38 |
+
|
39 |
+
# Prediction function
|
40 |
+
def predict_colleges(category, gender, rank, region):
|
41 |
+
# Load label encoders
|
42 |
+
label_encoders = joblib.load("label_encoders.pkl")
|
43 |
+
|
44 |
+
# Transform input values using label encoders
|
45 |
+
try:
|
46 |
+
category_enc = label_encoders["Category"].transform([category])[0]
|
47 |
+
gender_enc = label_encoders["Gender"].transform([gender])[0]
|
48 |
+
region_enc = label_encoders["Region"].transform([region])[0]
|
49 |
+
except ValueError:
|
50 |
+
return "Invalid input values. Please select valid options."
|
51 |
+
|
52 |
+
# Filter the dataset based on encoded values
|
53 |
+
filtered_df = df[
|
54 |
+
(df["Category"] == category_enc) &
|
55 |
+
(df["Gender"] == gender_enc) &
|
56 |
+
(df["Opening Rank"] <= rank) &
|
57 |
+
(df["Closing Rank"] >= rank) &
|
58 |
+
(df["Region"] == region_enc)
|
59 |
+
]
|
60 |
+
|
61 |
+
if filtered_df.empty:
|
62 |
+
return "No matching colleges found."
|
63 |
+
|
64 |
+
# Decode college names and branches
|
65 |
+
filtered_df["College Name"] = label_encoders["College Name"].inverse_transform(filtered_df["College Name"].values)
|
66 |
+
filtered_df["Branch"] = label_encoders["Branch"].inverse_transform(filtered_df["Branch"].values)
|
67 |
+
|
68 |
+
result = filtered_df[["College Name", "Branch"]].drop_duplicates().to_string(index=False)
|
69 |
+
return result
|
70 |
+
|
71 |
+
# Gradio Interface
|
72 |
+
demo = gr.Interface(
|
73 |
+
fn=predict_colleges,
|
74 |
+
inputs=[
|
75 |
+
gr.Dropdown(choices=["OC", "BC", "SC", "ST"], label="Category"),
|
76 |
+
gr.Radio(choices=["Male", "Female"], label="Gender"),
|
77 |
+
gr.Number(label="Rank"),
|
78 |
+
gr.Dropdown(choices=["AU", "SV"], label="Region")
|
79 |
+
],
|
80 |
+
outputs="text",
|
81 |
+
title="AP EAMCET College Predictor",
|
82 |
+
description="Enter your details to predict all possible colleges and branches based on your rank."
|
83 |
+
)
|
84 |
+
|
85 |
+
demo.launch()
|
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|