Spaces:
Runtime error
Runtime error
| # Copyright (c) 2022 Ximalaya Inc. (authors: Yuguang Yang) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Modified from Squeezeformer(https://github.com/kssteven418/Squeezeformer) | |
| # Squeezeformer(https://github.com/upskyy/Squeezeformer) | |
| # NeMo(https://github.com/NVIDIA/NeMo) | |
| """DepthwiseConv2dSubsampling4 and TimeReductionLayer definition.""" | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from wenet.transformer.subsampling import BaseSubsampling | |
| from typing import Tuple | |
| from wenet.squeezeformer.conv2d import Conv2dValid | |
| class DepthwiseConv2dSubsampling4(BaseSubsampling): | |
| """Depthwise Convolutional 2D subsampling (to 1/4 length). | |
| Args: | |
| idim (int): Input dimension. | |
| odim (int): Output dimension. | |
| pos_enc_class (nn.Module): position encoding class. | |
| dw_stride (int): Whether do depthwise convolution. | |
| input_size (int): filter bank dimension. | |
| """ | |
| def __init__(self, | |
| idim: int, | |
| odim: int, | |
| pos_enc_class: torch.nn.Module, | |
| dw_stride: bool = False, | |
| input_size: int = 80, | |
| input_dropout_rate: float = 0.1, | |
| init_weights: bool = True): | |
| super(DepthwiseConv2dSubsampling4, self).__init__() | |
| self.idim = idim | |
| self.odim = odim | |
| self.pw_conv = nn.Conv2d(in_channels=idim, | |
| out_channels=odim, | |
| kernel_size=3, | |
| stride=2) | |
| self.act1 = nn.ReLU() | |
| self.dw_conv = nn.Conv2d(in_channels=odim, | |
| out_channels=odim, | |
| kernel_size=3, | |
| stride=2, | |
| groups=odim if dw_stride else 1) | |
| self.act2 = nn.ReLU() | |
| self.pos_enc = pos_enc_class | |
| self.input_proj = nn.Sequential( | |
| nn.Linear(odim * (((input_size - 1) // 2 - 1) // 2), odim), | |
| nn.Dropout(p=input_dropout_rate), | |
| ) | |
| if init_weights: | |
| linear_max = (odim * input_size / 4)**-0.5 | |
| torch.nn.init.uniform_(self.input_proj.state_dict()['0.weight'], | |
| -linear_max, linear_max) | |
| torch.nn.init.uniform_(self.input_proj.state_dict()['0.bias'], | |
| -linear_max, linear_max) | |
| self.subsampling_rate = 4 | |
| # 6 = (3 - 1) * 1 + (3 - 1) * 2 | |
| self.right_context = 6 | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| x_mask: torch.Tensor, | |
| offset: int = 0 | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| x = x.unsqueeze(1) # (b, c=1, t, f) | |
| x = self.pw_conv(x) | |
| x = self.act1(x) | |
| x = self.dw_conv(x) | |
| x = self.act2(x) | |
| b, c, t, f = x.size() | |
| x = x.permute(0, 2, 1, 3) | |
| x = x.contiguous().view(b, t, c * f) | |
| x, pos_emb = self.pos_enc(x, offset) | |
| x = self.input_proj(x) | |
| return x, pos_emb, x_mask[:, :, :-2:2][:, :, :-2:2] | |
| class TimeReductionLayer1D(nn.Module): | |
| """ | |
| Modified NeMo, | |
| Squeezeformer Time Reduction procedure. | |
| Downsamples the audio by `stride` in the time dimension. | |
| Args: | |
| channel (int): input dimension of | |
| MultiheadAttentionMechanism and PositionwiseFeedForward | |
| out_dim (int): Output dimension of the module. | |
| kernel_size (int): Conv kernel size for | |
| depthwise convolution in convolution module | |
| stride (int): Downsampling factor in time dimension. | |
| """ | |
| def __init__(self, | |
| channel: int, | |
| out_dim: int, | |
| kernel_size: int = 5, | |
| stride: int = 2): | |
| super(TimeReductionLayer1D, self).__init__() | |
| self.channel = channel | |
| self.out_dim = out_dim | |
| self.kernel_size = kernel_size | |
| self.stride = stride | |
| self.padding = max(0, self.kernel_size - self.stride) | |
| self.dw_conv = nn.Conv1d( | |
| in_channels=channel, | |
| out_channels=channel, | |
| kernel_size=kernel_size, | |
| stride=stride, | |
| padding=self.padding, | |
| groups=channel, | |
| ) | |
| self.pw_conv = nn.Conv1d( | |
| in_channels=channel, | |
| out_channels=out_dim, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| groups=1, | |
| ) | |
| self.init_weights() | |
| def init_weights(self): | |
| dw_max = self.kernel_size**-0.5 | |
| pw_max = self.channel**-0.5 | |
| torch.nn.init.uniform_(self.dw_conv.weight, -dw_max, dw_max) | |
| torch.nn.init.uniform_(self.dw_conv.bias, -dw_max, dw_max) | |
| torch.nn.init.uniform_(self.pw_conv.weight, -pw_max, pw_max) | |
| torch.nn.init.uniform_(self.pw_conv.bias, -pw_max, pw_max) | |
| def forward( | |
| self, | |
| xs, | |
| xs_lens: torch.Tensor, | |
| mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| ): | |
| xs = xs.transpose(1, 2) # [B, C, T] | |
| xs = xs.masked_fill(mask_pad.eq(0), 0.0) | |
| xs = self.dw_conv(xs) | |
| xs = self.pw_conv(xs) | |
| xs = xs.transpose(1, 2) # [B, T, C] | |
| B, T, D = xs.size() | |
| mask = mask[:, ::self.stride, ::self.stride] | |
| mask_pad = mask_pad[:, :, ::self.stride] | |
| L = mask_pad.size(-1) | |
| # For JIT exporting, we remove F.pad operator. | |
| if L - T < 0: | |
| xs = xs[:, :L - T, :].contiguous() | |
| else: | |
| dummy_pad = torch.zeros(B, L - T, D, device=xs.device) | |
| xs = torch.cat([xs, dummy_pad], dim=1) | |
| xs_lens = torch.div(xs_lens + 1, 2, rounding_mode='trunc') | |
| return xs, xs_lens, mask, mask_pad | |
| class TimeReductionLayer2D(nn.Module): | |
| def __init__(self, | |
| kernel_size: int = 5, | |
| stride: int = 2, | |
| encoder_dim: int = 256): | |
| super(TimeReductionLayer2D, self).__init__() | |
| self.encoder_dim = encoder_dim | |
| self.kernel_size = kernel_size | |
| self.dw_conv = Conv2dValid(in_channels=encoder_dim, | |
| out_channels=encoder_dim, | |
| kernel_size=(kernel_size, 1), | |
| stride=stride, | |
| valid_trigy=True) | |
| self.pw_conv = Conv2dValid( | |
| in_channels=encoder_dim, | |
| out_channels=encoder_dim, | |
| kernel_size=1, | |
| stride=1, | |
| valid_trigx=False, | |
| valid_trigy=False, | |
| ) | |
| self.kernel_size = kernel_size | |
| self.stride = stride | |
| self.init_weights() | |
| def init_weights(self): | |
| dw_max = self.kernel_size**-0.5 | |
| pw_max = self.encoder_dim**-0.5 | |
| torch.nn.init.uniform_(self.dw_conv.weight, -dw_max, dw_max) | |
| torch.nn.init.uniform_(self.dw_conv.bias, -dw_max, dw_max) | |
| torch.nn.init.uniform_(self.pw_conv.weight, -pw_max, pw_max) | |
| torch.nn.init.uniform_(self.pw_conv.bias, -pw_max, pw_max) | |
| def forward( | |
| self, | |
| xs: torch.Tensor, | |
| xs_lens: torch.Tensor, | |
| mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| xs = xs.masked_fill(mask_pad.transpose(1, 2).eq(0), 0.0) | |
| xs = xs.unsqueeze(2) | |
| padding1 = self.kernel_size - self.stride | |
| xs = F.pad(xs, (0, 0, 0, 0, 0, padding1, 0, 0), | |
| mode='constant', | |
| value=0.) | |
| xs = self.dw_conv(xs.permute(0, 3, 1, 2)) | |
| xs = self.pw_conv(xs).permute(0, 3, 2, 1).squeeze(1).contiguous() | |
| tmp_length = xs.size(1) | |
| xs_lens = torch.div(xs_lens + 1, 2, rounding_mode='trunc') | |
| padding2 = max(0, (xs_lens.max() - tmp_length).data.item()) | |
| batch_size, hidden = xs.size(0), xs.size(-1) | |
| dummy_pad = torch.zeros(batch_size, padding2, hidden, device=xs.device) | |
| xs = torch.cat([xs, dummy_pad], dim=1) | |
| mask = mask[:, ::2, ::2] | |
| mask_pad = mask_pad[:, :, ::2] | |
| return xs, xs_lens, mask, mask_pad | |
| class TimeReductionLayerStream(nn.Module): | |
| """ | |
| Squeezeformer Time Reduction procedure. | |
| Downsamples the audio by `stride` in the time dimension. | |
| Args: | |
| channel (int): input dimension of | |
| MultiheadAttentionMechanism and PositionwiseFeedForward | |
| out_dim (int): Output dimension of the module. | |
| kernel_size (int): Conv kernel size for | |
| depthwise convolution in convolution module | |
| stride (int): Downsampling factor in time dimension. | |
| """ | |
| def __init__(self, | |
| channel: int, | |
| out_dim: int, | |
| kernel_size: int = 1, | |
| stride: int = 2): | |
| super(TimeReductionLayerStream, self).__init__() | |
| self.channel = channel | |
| self.out_dim = out_dim | |
| self.kernel_size = kernel_size | |
| self.stride = stride | |
| self.dw_conv = nn.Conv1d( | |
| in_channels=channel, | |
| out_channels=channel, | |
| kernel_size=kernel_size, | |
| stride=stride, | |
| padding=0, | |
| groups=channel, | |
| ) | |
| self.pw_conv = nn.Conv1d( | |
| in_channels=channel, | |
| out_channels=out_dim, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| groups=1, | |
| ) | |
| self.init_weights() | |
| def init_weights(self): | |
| dw_max = self.kernel_size**-0.5 | |
| pw_max = self.channel**-0.5 | |
| torch.nn.init.uniform_(self.dw_conv.weight, -dw_max, dw_max) | |
| torch.nn.init.uniform_(self.dw_conv.bias, -dw_max, dw_max) | |
| torch.nn.init.uniform_(self.pw_conv.weight, -pw_max, pw_max) | |
| torch.nn.init.uniform_(self.pw_conv.bias, -pw_max, pw_max) | |
| def forward( | |
| self, | |
| xs, | |
| xs_lens: torch.Tensor, | |
| mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| ): | |
| xs = xs.transpose(1, 2) # [B, C, T] | |
| xs = xs.masked_fill(mask_pad.eq(0), 0.0) | |
| xs = self.dw_conv(xs) | |
| xs = self.pw_conv(xs) | |
| xs = xs.transpose(1, 2) # [B, T, C] | |
| B, T, D = xs.size() | |
| mask = mask[:, ::self.stride, ::self.stride] | |
| mask_pad = mask_pad[:, :, ::self.stride] | |
| L = mask_pad.size(-1) | |
| # For JIT exporting, we remove F.pad operator. | |
| if L - T < 0: | |
| xs = xs[:, :L - T, :].contiguous() | |
| else: | |
| dummy_pad = torch.zeros(B, L - T, D, device=xs.device) | |
| xs = torch.cat([xs, dummy_pad], dim=1) | |
| xs_lens = torch.div(xs_lens + 1, 2, rounding_mode='trunc') | |
| return xs, xs_lens, mask, mask_pad | |