Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,099 Bytes
568e264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# Copyright (c) 2022 Yifan Peng (Carnegie Mellon University)
# 2023 Voicecomm Inc (Kai Li)
# 2023 Lucky Wong
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""EBranchformerEncoderLayer definition."""
import torch
import torch.nn as nn
from typing import Optional, Tuple
from wenet.transformer.attention import T_CACHE
class EBranchformerEncoderLayer(torch.nn.Module):
"""E-Branchformer encoder layer module.
Args:
size (int): model dimension
attn: standard self-attention or efficient attention
cgmlp: ConvolutionalGatingMLP
feed_forward: feed-forward module, optional
feed_forward: macaron-style feed-forward module, optional
dropout_rate (float): dropout probability
merge_conv_kernel (int): kernel size of the depth-wise conv in merge module
"""
def __init__(
self,
size: int,
attn: torch.nn.Module,
cgmlp: torch.nn.Module,
feed_forward: Optional[torch.nn.Module],
feed_forward_macaron: Optional[torch.nn.Module],
dropout_rate: float,
merge_conv_kernel: int = 3,
causal: bool = True,
stochastic_depth_rate=0.0,
):
super().__init__()
self.size = size
self.attn = attn
self.cgmlp = cgmlp
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.ff_scale = 1.0
if self.feed_forward is not None:
self.norm_ff = nn.LayerNorm(size)
if self.feed_forward_macaron is not None:
self.ff_scale = 0.5
self.norm_ff_macaron = nn.LayerNorm(size)
self.norm_mha = nn.LayerNorm(size) # for the MHA module
self.norm_mlp = nn.LayerNorm(size) # for the MLP module
# for the final output of the block
self.norm_final = nn.LayerNorm(size)
self.dropout = torch.nn.Dropout(dropout_rate)
if causal:
padding = 0
self.lorder = merge_conv_kernel - 1
else:
# kernel_size should be an odd number for none causal convolution
assert (merge_conv_kernel - 1) % 2 == 0
padding = (merge_conv_kernel - 1) // 2
self.lorder = 0
self.depthwise_conv_fusion = torch.nn.Conv1d(
size + size,
size + size,
kernel_size=merge_conv_kernel,
stride=1,
padding=padding,
groups=size + size,
bias=True,
)
self.merge_proj = torch.nn.Linear(size + size, size)
self.stochastic_depth_rate = stochastic_depth_rate
def _forward(
self,
x: torch.Tensor,
mask: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
att_cache: T_CACHE = (torch.zeros(
(0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)),
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
stoch_layer_coeff: float = 1.0
) -> Tuple[torch.Tensor, torch.Tensor, T_CACHE, torch.Tensor]:
if self.feed_forward_macaron is not None:
residual = x
x = self.norm_ff_macaron(x)
x = residual + stoch_layer_coeff * self.ff_scale * self.dropout(
self.feed_forward_macaron(x))
# Two branches
x1 = x
x2 = x
# Branch 1: multi-headed attention module
x1 = self.norm_mha(x1)
x_att, new_att_cache = self.attn(x1, x1, x1, mask, pos_emb, att_cache)
x1 = self.dropout(x_att)
# Branch 2: convolutional gating mlp
# Fake new cnn cache here, and then change it in conv_module
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
x2 = self.norm_mlp(x2)
x2, new_cnn_cache = self.cgmlp(x2, mask_pad, cnn_cache)
x2 = self.dropout(x2)
# Merge two branches
x_concat = torch.cat([x1, x2], dim=-1)
x_tmp = x_concat.transpose(1, 2)
if self.lorder > 0:
x_tmp = nn.functional.pad(x_tmp, (self.lorder, 0), "constant", 0.0)
assert x_tmp.size(2) > self.lorder
x_tmp = self.depthwise_conv_fusion(x_tmp)
x_tmp = x_tmp.transpose(1, 2)
x = x + stoch_layer_coeff * self.dropout(
self.merge_proj(x_concat + x_tmp))
if self.feed_forward is not None:
# feed forward module
residual = x
x = self.norm_ff(x)
x = residual + stoch_layer_coeff * self.ff_scale * self.dropout(
self.feed_forward(x))
x = self.norm_final(x)
return x, mask, new_att_cache, new_cnn_cache
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
att_cache: T_CACHE = (torch.zeros(
(0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)),
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
) -> Tuple[torch.Tensor, torch.Tensor, T_CACHE, torch.Tensor]:
"""Compute encoded features.
Args:
x (Union[Tuple, torch.Tensor]): Input tensor (#batch, time, size).
mask (torch.Tensor): Mask tensor for the input (#batch, time, time).
pos_emb (torch.Tensor): positional encoding, must not be None
for BranchformerEncoderLayer.
mask_pad (torch.Tensor): batch padding mask used for conv module.
(#batch, 1,time), (0, 0, 0) means fake mask.
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
cnn_cache (torch.Tensor): Convolution cache in cgmlp layer
(#batch=1, size, cache_t2)
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time, time.
torch.Tensor: att_cache tensor,
(#batch=1, head, cache_t1 + time, d_k * 2).
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
"""
stoch_layer_coeff = 1.0
# with stochastic depth, residual connection `x + f(x)` becomes
# `x <- x + 1 / (1 - p) * f(x)` at training time.
if self.training:
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
return self._forward(x, mask, pos_emb, mask_pad, att_cache, cnn_cache,
stoch_layer_coeff)
|