Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,364 Bytes
568e264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import datetime
import logging
import os
import random
import numpy as np
import yaml
import torch
import torch.distributed as dist
from torch.distributed.elastic.multiprocessing.errors import record
from wenet.utils.common import lrs_to_str, TORCH_NPU_AVAILABLE # noqa just ensure to check torch-npu
from wenet.utils.executor import Executor
from wenet.utils.config import override_config
from wenet.utils.init_model import init_model
from wenet.utils.init_tokenizer import init_tokenizer
from wenet.utils.train_utils import (
add_fsdp_args, add_model_args, add_dataset_args, add_ddp_args,
add_deepspeed_args, add_trace_args, init_distributed,
init_dataset_and_dataloader, check_modify_and_save_config,
init_optimizer_and_scheduler, init_scaler, trace_and_print_model,
wrap_cuda_model, init_summarywriter, save_model, log_per_epoch,
add_lora_args, reinit_lora)
from gxl_ai_utils.utils import utils_file
try:
import torch_npu
torch_npu.npu.conv.allow_hf32 = False
# import deepspeed_npu
from torch_npu.npu import amp
from torch_npu.contrib import transfer_to_npu
except ImportError:
utils_file.logging_warning(
"torch_npu is not installed, please install torch_npu first if you want to use torch_npu")
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
from msprobe.pytorch import seed_all
import gc
gc.set_threshold(700, 10, 10000) # python gc阈值设置
# import deepspeed_npu
def get_args():
parser = argparse.ArgumentParser(description='training your network')
parser.add_argument('--train_engine',
default='torch_ddp',
choices=['torch_ddp', 'torch_fsdp', 'deepspeed'],
help='Engine for paralleled training')
# set default value of device to "cuda", avoiding the modify of original scripts
parser.add_argument('--device',
type=str,
default='cuda',
choices=["cpu", "npu", "cuda"],
help='accelerator for training')
# load deepspeed checkpoint
parser.add_argument('--load_dir',
type=str,
default=None)
parser.add_argument('--ckpt_id',
type=str,
default=None)
parser = add_model_args(parser)
parser = add_dataset_args(parser)
parser = add_ddp_args(parser)
parser = add_lora_args(parser)
parser = add_deepspeed_args(parser)
parser = add_fsdp_args(parser)
parser = add_trace_args(parser)
args = parser.parse_args()
if args.train_engine == "deepspeed":
args.deepspeed = True
assert args.deepspeed_config is not None
return args
# NOTE(xcsong): On worker errors, this recod tool will summarize the
# details of the error (e.g. time, rank, host, pid, traceback, etc).
@record
def main():
args = get_args()
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(levelname)s %(message)s')
# Set random seed
torch.manual_seed(777)
random.seed(777)
np.random.seed(777)
utils_file.logging_info('开始严格seed')
seed_all(777)
utils_file.logging_info('结束严格seed')
logging.info('Random seed set to {}'.format(777))
# Read config
with open(args.config, 'r') as fin:
configs = yaml.load(fin, Loader=yaml.FullLoader)
if len(args.override_config) > 0:
configs = override_config(configs, args.override_config)
# init tokenizer
tokenizer = init_tokenizer(configs)
# Init env for ddp OR deepspeed
_, _, rank = init_distributed(args)
# Init asr model from configs
model, configs = init_model(args, configs)
# Get dataset & dataloader
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
init_dataset_and_dataloader(args, configs, tokenizer)
# Do some sanity checks and save config to arsg.model_dir
configs = check_modify_and_save_config(args, configs,
tokenizer.symbol_table)
if hasattr(args, 'lora_reinit') and args.lora_reinit:
reinit_lora(model, args, configs, tokenizer)
# Check model is jitable & print model archtectures
trace_and_print_model(args, model)
# Tensorboard summary
writer = init_summarywriter(args)
# Dispatch model from cpu to gpu
model, device = wrap_cuda_model(args, model, configs)
# Get optimizer & scheduler
model, optimizer, scheduler = init_optimizer_and_scheduler(
args, configs, model)
# Load deepspeed checkpoint
if args.load_dir is not None and \
args.ckpt_id is not None:
_, client_sd = model.load_checkpoint(args.load_dir, args.ckpt_id)
# Save checkpoints
# save_model(model,
# info_dict={
# "save_time":
# datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S'),
# "tag":
# "init",
# **configs
# })
# Get executor
tag = configs["init_infos"].get("tag", "init")
executor = Executor(global_step=configs["init_infos"].get('step', -1),
device=device)
# Init scaler, used for pytorch amp mixed precision training
scaler = init_scaler(args)
# Start training loop
start_epoch = configs["init_infos"].get('epoch', 0) + int("epoch_" in tag)
# if save_interval in configs, steps mode else epoch mode
end_epoch = configs.get('max_epoch', 100)
assert start_epoch <= end_epoch
configs.pop("init_infos", None)
final_epoch = None
for epoch in range(start_epoch, end_epoch):
configs['epoch'] = epoch
lrs = [group['lr'] for group in optimizer.param_groups]
logging.info('Epoch {} Step {} TRAIN info lr {} rank {}'.format(
epoch, executor.step, lrs_to_str(lrs), rank))
dist.barrier(
) # NOTE(xcsong): Ensure all ranks start Train at the same time.
# NOTE(xcsong): Why we need a new group? see `train_utils.py::wenet_join`
group_join = dist.new_group( # fix by zhaoyi for 多机训练
backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
# group_join = None
executor.train(model, optimizer, scheduler, train_data_loader,
cv_data_loader, writer, configs, scaler, group_join)
# dist.destroy_process_group(group_join)
dist.barrier(
) # NOTE(xcsong): Ensure all ranks start CV at the same time.
loss_dict = executor.cv(model, cv_data_loader, configs)
info_dict = {
'epoch': epoch,
'lrs': [group['lr'] for group in optimizer.param_groups],
'step': executor.step,
"loss_dict": loss_dict,
'save_time': datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S'),
'tag': "epoch_{}".format(epoch),
'loss_dict': loss_dict,
**configs
}
# epoch cv: tensorboard && log
log_per_epoch(writer, info_dict=info_dict)
save_model(model, info_dict=info_dict)
final_epoch = epoch
if final_epoch is not None and rank == 0:
final_model_path = os.path.join(args.model_dir, 'final.pt')
os.remove(final_model_path) if os.path.exists(
final_model_path) else None
os.symlink('{}.pt'.format(final_epoch), final_model_path)
writer.close()
dist.barrier(
) # NOTE(yktian): Ensure all ranks end Train before destroy process group.
dist.destroy_process_group()
if __name__ == '__main__':
main() |