Spaces:
Sleeping
Sleeping
File size: 8,394 Bytes
85993f4 af0160d 85993f4 48c62f7 85993f4 7672122 99ee6d2 85993f4 99ee6d2 b7e5937 af0160d 85993f4 af0160d 85993f4 7672122 85993f4 99ee6d2 85993f4 99ee6d2 85993f4 7672122 85993f4 7672122 85993f4 99ee6d2 85993f4 1920ef2 6cb40a3 99ee6d2 48c62f7 1920ef2 b7e5937 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import os
import streamlit as st
import zipfile
import torch
from utils import *
import matplotlib.pyplot as plt
from matplotlib import colors
if not hasattr(st, 'paths'):
st.paths = None
if not hasattr(st, 'daily_model'):
best_model_daily_file_name = "best_model_daily.pth"
best_model_annual_file_name = "best_model_annual.pth"
first_input_batch = torch.zeros(71, 9, 5, 48, 48)
# first_input_batch = first_input_batch.view(-1, *first_input_batch.shape[2:])
st.daily_model = FPN(opt, first_input_batch, opt.win_size)
st.annual_model = SimpleNN(opt)
if torch.cuda.is_available():
st.daily_model = torch.nn.DataParallel(st.daily_model).cuda()
st.annual_model = torch.nn.DataParallel(st.annual_model).cuda()
st.daily_model = torch.nn.DataParallel(st.daily_model).cuda()
st.annual_model = torch.nn.DataParallel(st.annual_model).cuda()
else:
st.daily_model = torch.nn.DataParallel(st.daily_model).cpu()
st.annual_model = torch.nn.DataParallel(st.annual_model).cpu()
st.daily_model = torch.nn.DataParallel(st.daily_model).cpu()
st.annual_model = torch.nn.DataParallel(st.annual_model).cpu()
print('trying to resume previous saved models...')
state = resume(
os.path.join(opt.resume_path, best_model_daily_file_name),
model=st.daily_model, optimizer=None)
state = resume(
os.path.join(opt.resume_path, best_model_annual_file_name),
model=st.annual_model, optimizer=None)
st.daily_model = st.daily_model.eval()
st.annual_model = st.annual_model.eval()
# Load Model
# @title Load pretrained weights
st.title('In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series')
st.markdown(""" Demo App for the model presented in the paper:
```
@article{gallo2022in_season,
title = {In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series},
journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
volume = {195},
pages = {335-352},
year = {2023},
issn = {0924-2716},
doi = {https://doi.org/10.1016/j.isprsjprs.2022.12.005},
url = {https://www.sciencedirect.com/science/article/pii/S0924271622003203},
author = {Ignazio Gallo and Luigi Ranghetti and Nicola Landro and Riccardo {La Grassa} and Mirco Boschetti},
}
```
""")
file_uploaded = st.file_uploader(
"Upload",
type=["zip"],
accept_multiple_files=False,
)
sample_path = None
if file_uploaded is not None:
with zipfile.ZipFile(file_uploaded, "r") as z:
z.extractall("uploaded_samples")
sample_path = "uploaded_samples/" + file_uploaded.name[:-4]
st.markdown('or use a demo sample')
if st.button('sample 1'):
sample_path = 'demo_data/lombardia'
paths = None
if sample_path is not None:
st.markdown(f'elaborating {sample_path}...')
validationdataset = SentinelDailyAnnualDatasetNoLabel(
sample_path,
opt.years,
opt.classes_path,
opt.sample_duration,
opt.win_size,
tileids=None)
validationdataloader = torch.utils.data.DataLoader(
validationdataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.workers)
st.markdown(f'predict in progress...')
out_dir = os.path.join(opt.result_path, "seg_maps")
if not os.path.exists(out_dir):
os.makedirs(out_dir)
for i, (x_dailies, dates, dirs_path) in enumerate(validationdataloader):
with torch.no_grad():
# x_dailies, dates, dirs_path = next(iter(validationdataloader))
# reshape merging the first two dimensions
x_dailies = x_dailies.view(-1, *x_dailies.shape[2:])
if torch.cuda.is_available():
x_dailies = x_dailies.cuda()
feat_daily, outs_daily = st.daily_model.forward(x_dailies)
# return to original size of batch and year
outs_daily = outs_daily.view(
opt.batch_size, opt.sample_duration, *outs_daily.shape[1:])
feat_daily = feat_daily.view(
opt.batch_size, opt.sample_duration, *feat_daily.shape[1:])
_, out_annual = st.annual_model.forward(feat_daily)
pred_annual = torch.argmax(out_annual, dim=1).squeeze(1)
pred_annual = pred_annual.cpu().numpy()
# Remapping the labels
pred_annual_nn = ids_to_labels(
validationdataloader, pred_annual).astype(numpy.uint8)
for batch in range(feat_daily.shape[0]):
# _, profile = read(os.path.join(dirs_path[batch], '20191230_MSAVI.tif')) # todo get the last image
_, tmp_path = get_patch_id(validationdataset.samples, 0)
dates = get_all_dates(
tmp_path, validationdataset.max_seq_length)
last_tif_path = os.path.join(tmp_path, dates[-1] + ".tif")
_, profile = read(last_tif_path)
profile["name"] = dirs_path[batch]
pth = dirs_path[batch].split(os.path.sep)[-3:]
full_pth_patch = os.path.join(
out_dir, pth[1] + '-' + pth[0], pth[2])
if not os.path.exists(full_pth_patch):
os.makedirs(full_pth_patch)
full_pth_pred = os.path.join(
full_pth_patch, 'patch-pred-nn.tif')
profile.update({
'nodata': None,
'dtype': 'uint8',
'count': 1})
with rasterio.open(full_pth_pred, 'w', **profile) as dst:
dst.write_band(1, pred_annual_nn[batch])
# patch_predictions = None
for ch in range(len(dates)):
soft_seg = outs_daily[batch, ch, :, :, :]
# transform probs into a hard segmentation
pred_daily = torch.argmax(soft_seg, dim=0)
pred_daily = pred_daily.cpu()
daily_pred = ids_to_labels(
validationdataloader, pred_daily).astype(numpy.uint8)
# if patch_predictions is None:
# patch_predictions = numpy.expand_dims(daily_pred, axis=0)
# else:
# patch_predictions = numpy.concatenate((patch_predictions, numpy.expand_dims(daily_pred, axis=0)),
# axis=0)
# save GT image in opt.root_path
full_pth_date = os.path.join(
full_pth_patch, dates[ch][batch] + f'-ch{ch}-b{batch}-daily-pred.tif')
profile.update({
'nodata': None,
'dtype': 'uint8',
'count': 1})
with rasterio.open(full_pth_date, 'w', **profile) as dst:
dst.write_band(1, daily_pred)
st.markdown('End prediction')
folder = "demo_data/results/seg_maps/example-lombardia/2"
st.paths = os.listdir(folder)
if st.paths is not None:
folder = "demo_data/results/seg_maps/example-lombardia/2"
file_picker = st.selectbox("Select day predict (annual is patch-pred-nn.tif)",
st.paths, index=st.paths.index('patch-pred-nn.tif'))
file_path = os.path.join(folder, file_picker)
# print(file_path)
target, profile = read(file_path)
target = np.squeeze(target)
target = [classes_color_map[p] for p in target]
fig, ax = plt.subplots()
ax.imshow(target)
markdown_legend = ''
for c, l in zip(color_labels, labels_map):
# print(colors.to_hex(c))
markdown_legend += f'<div style="color:gray;background-color: {colors.to_hex(c)};">{l}</div><br>'
col1, col2 = st.columns(2)
with col1:
st.pyplot(fig)
with col2:
st.markdown(markdown_legend, unsafe_allow_html=True)
st.markdown("""
## Lombardia Dataset
You can download other patches from the original dataset created and published on
[Kaggle](https://www.kaggle.com/datasets/ignazio/sentinel2-crop-mapping) and used in our paper.
## How to build an input file for the Demo
Using a daily FPN and giving a zip that contains 30 tiff with 7 channels, correctly named you can reach prediction of
crop mapping og the area...
""")
|