File size: 1,915 Bytes
8c753d1
 
b4eade4
8c753d1
b4eade4
 
 
 
 
 
 
 
 
8c753d1
 
b4eade4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c753d1
 
 
 
b4eade4
8c753d1
b4eade4
 
8c753d1
b4eade4
8c753d1
b4eade4
 
 
 
 
 
 
 
 
8c753d1
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gradio as gr
from PIL import Image
from collections import OrderedDict
import torch
from models.model import GLPDepth
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
import numpy as np




# load model
DEVICE='cpu'
def load_mde_model(path):
    model = GLPDepth(max_depth=700.0, is_train=False).to(DEVICE)
    model_weight = torch.load(path, map_location=torch.device('cpu'))
    model_weight = model_weight['model_state_dict']
    if 'module' in next(iter(model_weight.items()))[0]:
        model_weight = OrderedDict((k[7:], v) for k, v in model_weight.items())
    model.load_state_dict(model_weight)
    model.eval()
    return model

model = load_mde_model('best_model.ckpt')
preprocess = transforms.Compose([
    transforms.Resize((512, 512)),
    transforms.ToTensor()
]) 

def predict(input_image):
    pil_image = Image.fromarray(input_image.astype('uint8'), 'RGB')
    # transform image to torch and do preprocessing
    torch_img = preprocess(pil_image).to(DEVICE).unsqueeze(0)
    # model predict
    with torch.no_grad():
        output_patch = model(torch_img)
    # transform torch to image
    predicted_image = output_patch['pred_d'].squeeze().cpu().detach().numpy()
    # return correct image
    fig, ax = plt.subplots()
    im = ax.imshow(predicted_image, cmap='jet', vmin=0, vmax=np.max(predicted_image))
    plt.colorbar(im, ax=ax)

    fig.canvas.draw()
    data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))

    return data

iface = gr.Interface(
    fn=predict, 
    inputs=gr.Image(shape=(512,512)), 
    outputs=gr.Image(shape=(512,512)),
    examples=[
        ["demo_imgs/fake.jpg"] # use real image
    ],
    title="DTM Estimation",
    description="This demo predict a DTM..."
)
iface.launch()