Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from transformers import pipeline | |
| from huggingface_hub import login | |
| from dotenv import load_dotenv | |
| import os | |
| # Load the environment variables from the .env file | |
| load_dotenv() | |
| # Retrieve the token from the .env file | |
| huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
| # Log in using the retrieved token | |
| login(token=huggingface_token) | |
| # Available models for summarization | |
| models = { | |
| "T5": "Sandaruth/T5_Full_Fine_Tuned_FINDSUM", | |
| "BERT": "bert-base-uncased", # Note: BERT isn't designed for summarization; you can change this | |
| "LongT5": "google/long-t5-local-base", | |
| "Pegasus": "google/pegasus-xsum" | |
| } | |
| # Streamlit app layout | |
| st.title("Summarization with Multiple Models") | |
| # Dropdown to select the model | |
| model_choice = st.selectbox("Select a model for summarization", models.keys()) | |
| # Text area for input | |
| input_text = st.text_area("Enter the long text you want to summarize", height=300) | |
| # Button to generate the summary | |
| if st.button("Generate Summary"): | |
| # Load the selected model and summarizer pipeline | |
| summarizer = pipeline("summarization", model=models[model_choice]) | |
| if input_text: | |
| # Generate the summary | |
| summary = summarizer(input_text, max_length=150, min_length=30, do_sample=False) | |
| # Display the summary | |
| st.subheader("Generated Summary") | |
| st.write(summary[0]['summary_text']) | |
| else: | |
| st.write("Please enter text to summarize!") | |