Spaces:
Sleeping
Sleeping
Update models/pixtral.py
Browse files- models/pixtral.py +123 -113
models/pixtral.py
CHANGED
@@ -1,113 +1,123 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import base64
|
4 |
-
from PIL import Image
|
5 |
-
from
|
6 |
-
from vllm
|
7 |
-
from
|
8 |
-
|
9 |
-
#
|
10 |
-
hf_token = os.getenv("HF_TOKEN")
|
11 |
-
Image.MAX_IMAGE_PIXELS = None
|
12 |
-
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
json_candidate
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
def assign_best_guess(obj):
|
76 |
-
if not obj.get("name") or obj["name"].strip() == "":
|
77 |
-
obj["name"] = "(label unknown)"
|
78 |
-
|
79 |
-
for evt in json_data.get("events", []):
|
80 |
-
assign_best_guess(evt)
|
81 |
-
|
82 |
-
for gw in json_data.get("gateways", []):
|
83 |
-
assign_best_guess(gw)
|
84 |
-
|
85 |
-
return json_data
|
86 |
-
|
87 |
-
|
88 |
-
def run_model(image: Image.Image):
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
"
|
95 |
-
"
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import base64
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
6 |
+
from vllm import LLM
|
7 |
+
from vllm.sampling_params import SamplingParams
|
8 |
+
|
9 |
+
# Hugging Face token from environment (optional)
|
10 |
+
hf_token = os.getenv("HF_TOKEN")
|
11 |
+
Image.MAX_IMAGE_PIXELS = None
|
12 |
+
|
13 |
+
# Global placeholders (lazy-loaded later)
|
14 |
+
llm = None
|
15 |
+
ocr_model = None
|
16 |
+
ocr_processor = None
|
17 |
+
sampling_params = SamplingParams(max_tokens=5000)
|
18 |
+
|
19 |
+
|
20 |
+
def load_prompt():
|
21 |
+
with open("prompts/prompt.txt", "r", encoding="utf-8") as f:
|
22 |
+
return f.read()
|
23 |
+
|
24 |
+
|
25 |
+
def try_extract_json(text):
|
26 |
+
if not text or not text.strip():
|
27 |
+
return None
|
28 |
+
try:
|
29 |
+
return json.loads(text)
|
30 |
+
except json.JSONDecodeError:
|
31 |
+
start = text.find('{')
|
32 |
+
if start == -1:
|
33 |
+
return None
|
34 |
+
brace_count = 0
|
35 |
+
json_candidate = ''
|
36 |
+
for i in range(start, len(text)):
|
37 |
+
if text[i] == '{':
|
38 |
+
brace_count += 1
|
39 |
+
elif text[i] == '}':
|
40 |
+
brace_count -= 1
|
41 |
+
json_candidate += text[i]
|
42 |
+
if brace_count == 0:
|
43 |
+
break
|
44 |
+
try:
|
45 |
+
return json.loads(json_candidate)
|
46 |
+
except json.JSONDecodeError:
|
47 |
+
return None
|
48 |
+
|
49 |
+
|
50 |
+
def encode_image_as_base64(pil_image):
|
51 |
+
from io import BytesIO
|
52 |
+
buffer = BytesIO()
|
53 |
+
pil_image.save(buffer, format="JPEG")
|
54 |
+
return base64.b64encode(buffer.getvalue()).decode("utf-8")
|
55 |
+
|
56 |
+
|
57 |
+
def extract_all_text_pix2struct(image: Image.Image):
|
58 |
+
global ocr_processor, ocr_model
|
59 |
+
|
60 |
+
if ocr_processor is None or ocr_model is None:
|
61 |
+
ocr_processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base")
|
62 |
+
ocr_model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base")
|
63 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
64 |
+
ocr_model = ocr_model.to(device)
|
65 |
+
|
66 |
+
inputs = ocr_processor(images=image, return_tensors="pt").to(ocr_model.device)
|
67 |
+
predictions = ocr_model.generate(**inputs, max_new_tokens=512)
|
68 |
+
return ocr_processor.decode(predictions[0], skip_special_tokens=True).strip()
|
69 |
+
|
70 |
+
|
71 |
+
def assign_event_gateway_names_from_ocr(json_data: dict, ocr_text: str):
|
72 |
+
if not ocr_text or not json_data:
|
73 |
+
return json_data
|
74 |
+
|
75 |
+
def assign_best_guess(obj):
|
76 |
+
if not obj.get("name") or obj["name"].strip() == "":
|
77 |
+
obj["name"] = "(label unknown)"
|
78 |
+
|
79 |
+
for evt in json_data.get("events", []):
|
80 |
+
assign_best_guess(evt)
|
81 |
+
|
82 |
+
for gw in json_data.get("gateways", []):
|
83 |
+
assign_best_guess(gw)
|
84 |
+
|
85 |
+
return json_data
|
86 |
+
|
87 |
+
|
88 |
+
def run_model(image: Image.Image):
|
89 |
+
global llm
|
90 |
+
|
91 |
+
if llm is None:
|
92 |
+
llm = LLM(
|
93 |
+
model="mistralai/Pixtral-12B-2409",
|
94 |
+
tokenizer_mode="mistral",
|
95 |
+
dtype="bfloat16",
|
96 |
+
max_model_len=30000,
|
97 |
+
)
|
98 |
+
|
99 |
+
prompt = load_prompt()
|
100 |
+
encoded_image = encode_image_as_base64(image)
|
101 |
+
|
102 |
+
messages = [
|
103 |
+
{
|
104 |
+
"role": "user",
|
105 |
+
"content": [
|
106 |
+
{"type": "text", "text": prompt},
|
107 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}}
|
108 |
+
]
|
109 |
+
}
|
110 |
+
]
|
111 |
+
|
112 |
+
outputs = llm.chat(messages, sampling_params=sampling_params)
|
113 |
+
raw_output = outputs[0].outputs[0].text
|
114 |
+
parsed_json = try_extract_json(raw_output)
|
115 |
+
|
116 |
+
# Apply OCR enrichment
|
117 |
+
ocr_text = extract_all_text_pix2struct(image)
|
118 |
+
parsed_json = assign_event_gateway_names_from_ocr(parsed_json, ocr_text)
|
119 |
+
|
120 |
+
return {
|
121 |
+
"json": parsed_json,
|
122 |
+
"raw": raw_output
|
123 |
+
}
|