File size: 6,365 Bytes
6c0c37c
 
 
 
5ceb94b
b4c7716
5397ce0
15a946c
5397ce0
 
 
 
 
 
 
 
 
 
 
 
6c0c37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72c589b
6c0c37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5397ce0
 
 
6c0c37c
b4c7716
5397ce0
b4c7716
6c0c37c
5397ce0
6c0c37c
 
b4c7716
6c0c37c
349467f
b4c7716
 
 
6c0c37c
 
 
 
b4c7716
 
 
 
 
6c0c37c
5397ce0
6c0c37c
5397ce0
 
 
 
 
6c0c37c
5397ce0
 
349467f
 
6c0c37c
5397ce0
349467f
5397ce0
6c0c37c
 
5397ce0
 
bdefa77
5397ce0
bdefa77
b2bf7f6
e636262
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import gradio as gr
import importlib
from PIL import Image
import json
import os
import tempfile
import spaces

# === Model Mapping ===
MODEL_MAP = {
    #"Qwen": "models.qwen",
    #"Pixtral": "models.pixtral",
    #"Aya Vision": "models.aya_vision",
    "GPT-4o": "models.gpt4o"
}

# === Load Model
def load_model_runner(model_name):
    module = importlib.import_module(MODEL_MAP[model_name])
    return module.run_model

# === Format Raw JSON Output
def format_result_json(output):
    if isinstance(output, dict):
        return json.dumps(output, indent=2)
    else:
        return str(output).strip()

# === Prettified Output View
def format_pretty_view(output):
    if not isinstance(output, dict):
        return "No structured JSON found.\n\n" + str(output)

    lines = []
    process = output.get("process", output)

    if "name" in process:
        lines.append(f"๐Ÿ“ฆ Process Name: {process['name']}\n")

    if "startEvent" in process:
        start = process["startEvent"]
        name = start.get("name", "")
        type_ = start.get("type", "")
        desc = start.get("description", "")
        line = f"โ–ถ๏ธ Start: {name}"
        if type_:
            line += f" ({type_})"
        if desc:
            line += f" - {desc}"
        lines.append(line)

    if "endEvent" in process:
        end = process["endEvent"]
        name = end.get("name", "")
        type_ = end.get("type", "")
        desc = end.get("description", "")
        line = f"โน End: {name}"
        if type_:
            line += f" ({type_})"
        if desc:
            line += f" - {desc}"
        lines.append(line)

    if "tasks" in process:
        lines.append("\n๐Ÿ”น Tasks:")
        for t in process["tasks"]:
            name = t.get("name", "")
            type_ = t.get("type", "")
            desc = t.get("description", "")
            line = f" - {name}"
            if type_:
                line += f" ({type_})"
            if desc:
                line += f" - {desc}"
            lines.append(line)

    if "events" in process:
        lines.append("\n๐Ÿ“จ Events:")
        for e in process["events"]:
            name = e.get("name", "")
            type_ = e.get("type", "")
            desc = e.get("description", "")
            line = f" - {name}"
            if type_:
                line += f" ({type_})"
            if desc:
                line += f" - {desc}"
            lines.append(line)

    if "gateways" in process:
        lines.append("\n๐Ÿ”€ Gateways:")
        for g in process["gateways"]:
            name = g.get("name", "")
            type_ = g.get("type", "")
            label = g.get("label", "")
            desc = g.get("description", "")
            line = f" - {name}"
            if type_:
                line += f" ({type_})"
            if label:
                line += f" | Label: {label}"
            if desc:
                line += f" - {desc}"
            lines.append(line)

    if "sequenceFlows" in process:
        lines.append("\nโžก๏ธ Sequence Flows:")
        for f in process["sequenceFlows"]:
            src = f.get("sourceTask") or f.get("sourceEvent") or "Unknown"
            tgt = f.get("targetTask") or f.get("targetEvent") or "Unknown"
            condition = f.get("condition", "")
            line = f" - {src} โ†’ {tgt}"
            if condition:
                line += f" [Condition: {condition}]"
            lines.append(line)

    if "connections" in process:
        lines.append("\n๐Ÿ”— Connections:")
        for c in process["connections"]:
            src = c.get("sourceTask") or c.get("sourceEvent") or "Unknown"
            tgt = c.get("targetTask") or c.get("targetEvent") or "Unknown"
            condition = c.get("condition", "")
            line = f" - {src} โ†’ {tgt}"
            if condition:
                line += f" [Condition: {condition}]"
            lines.append(line)

    if "relationships" in process:
        lines.append("\n๐Ÿ”— Relationships:")
        for r in process["relationships"]:
            source = r.get("source")
            target = r.get("target")
            src = source.get("ref", "Unknown") if isinstance(source, dict) else str(source)
            tgt = target.get("ref", "Unknown") if isinstance(target, dict) else str(target)
            desc = r.get("description", "")
            line = f" - {src} โ†’ {tgt}"
            if desc:
                line += f" | {desc}"
            lines.append(line)

    return "\n".join(lines).strip()

# === Main Inference Handler
def process_single_image(model_name, image_file):
    runner = load_model_runner(model_name)
    image = Image.open(image_file.name).convert("RGB")
    base_name = os.path.splitext(os.path.basename(image_file.name))[0]

    result = runner(image)
    parsed_json = result.get("json")
    raw_text = result.get("raw", "")

    if parsed_json:
        json_output = json.dumps(parsed_json, indent=2)
        pretty_output = format_pretty_view(parsed_json)

        tmp_path = os.path.join(tempfile.gettempdir(), f"{base_name}_output.json")
        with open(tmp_path, "w", encoding="utf-8") as f:
            json.dump(parsed_json, f, indent=2)
    else:
        json_output = "(No valid JSON extracted)"
        pretty_output = "(No structured content extracted)\n\nโš ๏ธ Raw Model Output:\n" + raw_text

        tmp_path = os.path.join(tempfile.gettempdir(), f"{base_name}_output.txt")
        with open(tmp_path, "w", encoding="utf-8") as f:
            f.write(raw_text)

    return image, json_output, pretty_output, tmp_path

# === Gradio UI
iface = gr.Interface(
    fn=process_single_image,
    inputs=[
        gr.Dropdown(choices=list(MODEL_MAP.keys()), label="Select Vision Model"),
        gr.File(file_types=["image"], label="Upload a BPMN Image")
    ],
    outputs=[
        gr.Image(label="Input Image"),
        gr.Textbox(label="Raw JSON Output (Technical)", lines=20),
        gr.Textbox(label="Prettified View (User-Friendly)", lines=25),
        gr.File(label="๐Ÿ“ฅ Download JSON", visible=True)
    ],
    title="๐Ÿ–ผ๏ธ Vision Model Extractor - JSON + Pretty View",
    description="Upload a BPMN image and select a vision model to extract structured output. Currenty supports only GPT-4o.",
    flagging_mode="never"
)

# === Enable GPU mode and launch
#@spaces.GPU
def main():
    iface.launch()

if __name__ == "__main__":
    main()