Spaces:
Sleeping
Sleeping
File size: 5,868 Bytes
6c0c37c 5397ce0 15a946c 5397ce0 6c0c37c 72c589b 6c0c37c 5397ce0 6c0c37c 5397ce0 6c0c37c 5397ce0 6c0c37c 5397ce0 6c0c37c 5397ce0 6c0c37c 5397ce0 6c0c37c 5397ce0 6c0c37c 5397ce0 bdefa77 5397ce0 bdefa77 b2bf7f6 e636262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import gradio as gr
import importlib
from PIL import Image
import json
import spaces
# === Model Mapping ===
MODEL_MAP = {
#"Qwen": "models.qwen",
#"Pixtral": "models.pixtral",
#"Aya Vision": "models.aya_vision",
"GPT-4o": "models.gpt4o"
}
# === Load Model
def load_model_runner(model_name):
module = importlib.import_module(MODEL_MAP[model_name])
return module.run_model
# === Format Raw JSON Output
def format_result_json(output):
if isinstance(output, dict):
return json.dumps(output, indent=2)
else:
return str(output).strip()
# === Prettified Output View
def format_pretty_view(output):
if not isinstance(output, dict):
return "No structured JSON found.\n\n" + str(output)
lines = []
process = output.get("process", output)
if "name" in process:
lines.append(f"๐ฆ Process Name: {process['name']}\n")
if "startEvent" in process:
start = process["startEvent"]
name = start.get("name", "")
type_ = start.get("type", "")
desc = start.get("description", "")
line = f"โถ๏ธ Start: {name}"
if type_:
line += f" ({type_})"
if desc:
line += f" - {desc}"
lines.append(line)
if "endEvent" in process:
end = process["endEvent"]
name = end.get("name", "")
type_ = end.get("type", "")
desc = end.get("description", "")
line = f"โน End: {name}"
if type_:
line += f" ({type_})"
if desc:
line += f" - {desc}"
lines.append(line)
if "tasks" in process:
lines.append("\n๐น Tasks:")
for t in process["tasks"]:
name = t.get("name", "")
type_ = t.get("type", "")
desc = t.get("description", "")
line = f" - {name}"
if type_:
line += f" ({type_})"
if desc:
line += f" - {desc}"
lines.append(line)
if "events" in process:
lines.append("\n๐จ Events:")
for e in process["events"]:
name = e.get("name", "")
type_ = e.get("type", "")
desc = e.get("description", "")
line = f" - {name}"
if type_:
line += f" ({type_})"
if desc:
line += f" - {desc}"
lines.append(line)
if "gateways" in process:
lines.append("\n๐ Gateways:")
for g in process["gateways"]:
name = g.get("name", "")
type_ = g.get("type", "")
label = g.get("label", "")
desc = g.get("description", "")
line = f" - {name}"
if type_:
line += f" ({type_})"
if label:
line += f" | Label: {label}"
if desc:
line += f" - {desc}"
lines.append(line)
if "sequenceFlows" in process:
lines.append("\nโก๏ธ Sequence Flows:")
for f in process["sequenceFlows"]:
src = f.get("sourceTask") or f.get("sourceEvent") or "Unknown"
tgt = f.get("targetTask") or f.get("targetEvent") or "Unknown"
condition = f.get("condition", "")
line = f" - {src} โ {tgt}"
if condition:
line += f" [Condition: {condition}]"
lines.append(line)
if "connections" in process:
lines.append("\n๐ Connections:")
for c in process["connections"]:
src = c.get("sourceTask") or c.get("sourceEvent") or "Unknown"
tgt = c.get("targetTask") or c.get("targetEvent") or "Unknown"
condition = c.get("condition", "")
line = f" - {src} โ {tgt}"
if condition:
line += f" [Condition: {condition}]"
lines.append(line)
if "relationships" in process:
lines.append("\n๐ Relationships:")
for r in process["relationships"]:
source = r.get("source")
target = r.get("target")
src = source.get("ref", "Unknown") if isinstance(source, dict) else str(source)
tgt = target.get("ref", "Unknown") if isinstance(target, dict) else str(target)
desc = r.get("description", "")
line = f" - {src} โ {tgt}"
if desc:
line += f" | {desc}"
lines.append(line)
return "\n".join(lines).strip()
# === Main Inference Handler
def process_single_image(model_name, image_file):
runner = load_model_runner(model_name)
image = Image.open(image_file.name).convert("RGB")
result = runner(image)
parsed_json = result.get("json")
raw_text = result.get("raw", "")
if parsed_json:
json_output = format_result_json(parsed_json)
pretty_output = format_pretty_view(parsed_json)
else:
json_output = "(No valid JSON extracted)"
pretty_output = "(No structured content extracted)\n\nโ ๏ธ Raw Model Output:\n" + raw_text
return image, json_output, pretty_output
# === Gradio UI
iface = gr.Interface(
fn=process_single_image,
inputs=[
gr.Dropdown(choices=list(MODEL_MAP.keys()), label="Select Vision Model"),
gr.File(file_types=["image"], label="Upload a BPMN Image")
],
outputs=[
gr.Image(label="Input Image"),
gr.Textbox(label="Raw JSON Output (Technical)", lines=20),
gr.Textbox(label="Prettified View (User-Friendly)", lines=25)
],
title="๐ผ๏ธ Vision Model Extractor - JSON + Pretty View",
description="Upload a BPMN image and select a vision model to extract structured output. GPT-4o uses an API key from your Hugging Face Space Secret.",
flagging_mode="never"
)
# === Enable GPU mode and launch
#@spaces.GPU
def main():
iface.launch()
if __name__ == "__main__":
main()
|