Spaces:
Sleeping
Sleeping
File size: 5,441 Bytes
6c0c37c 97fc69c 15a946c 97fc69c 6c0c37c 72c589b 6c0c37c 97fc69c 6c0c37c 97fc69c 6c0c37c 97fc69c 6c0c37c 97fc69c 6c0c37c 97fc69c 6c0c37c 97fc69c 6c0c37c 97fc69c 6c0c37c 97fc69c bdefa77 97fc69c bdefa77 b2bf7f6 e636262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import gradio as gr
import importlib
from PIL import Image
import json
import os
# === Load the GPT-4o module only
from models import gpt4o_pix2struct_ocr
# === Format Raw JSON Output
def format_result_json(output):
if isinstance(output, dict):
return json.dumps(output, indent=2)
else:
return str(output).strip()
# === Prettified Output View
def format_pretty_view(output):
if not isinstance(output, dict):
return "No structured JSON found.\n\n" + str(output)
lines = []
process = output.get("process", output)
if "name" in process:
lines.append(f"π¦ Process Name: {process['name']}\n")
if "startEvent" in process:
start = process["startEvent"]
name = start.get("name", "")
type_ = start.get("type", "")
desc = start.get("description", "")
line = f"βΆοΈ Start: {name}"
if type_:
line += f" ({type_})"
if desc:
line += f" - {desc}"
lines.append(line)
if "endEvent" in process:
end = process["endEvent"]
name = end.get("name", "")
type_ = end.get("type", "")
desc = end.get("description", "")
line = f"βΉ End: {name}"
if type_:
line += f" ({type_})"
if desc:
line += f" - {desc}"
lines.append(line)
if "tasks" in process:
lines.append("\nπΉ Tasks:")
for t in process["tasks"]:
name = t.get("name", "")
type_ = t.get("type", "")
desc = t.get("description", "")
line = f" - {name}"
if type_:
line += f" ({type_})"
if desc:
line += f" - {desc}"
lines.append(line)
if "events" in process:
lines.append("\nπ¨ Events:")
for e in process["events"]:
name = e.get("name", "")
type_ = e.get("type", "")
desc = e.get("description", "")
line = f" - {name}"
if type_:
line += f" ({type_})"
if desc:
line += f" - {desc}"
lines.append(line)
if "gateways" in process:
lines.append("\nπ Gateways:")
for g in process["gateways"]:
name = g.get("name", "")
type_ = g.get("type", "")
label = g.get("label", "")
desc = g.get("description", "")
line = f" - {name}"
if type_:
line += f" ({type_})"
if label:
line += f" | Label: {label}"
if desc:
line += f" - {desc}"
lines.append(line)
if "sequenceFlows" in process:
lines.append("\nβ‘οΈ Sequence Flows:")
for f in process["sequenceFlows"]:
src = f.get("sourceTask") or f.get("sourceEvent") or "Unknown"
tgt = f.get("targetTask") or f.get("targetEvent") or "Unknown"
condition = f.get("condition", "")
line = f" - {src} β {tgt}"
if condition:
line += f" [Condition: {condition}]"
lines.append(line)
if "connections" in process:
lines.append("\nπ Connections:")
for c in process["connections"]:
src = c.get("sourceTask") or c.get("sourceEvent") or "Unknown"
tgt = c.get("targetTask") or c.get("targetEvent") or "Unknown"
condition = c.get("condition", "")
line = f" - {src} β {tgt}"
if condition:
line += f" [Condition: {condition}]"
lines.append(line)
if "relationships" in process:
lines.append("\nπ Relationships:")
for r in process["relationships"]:
source = r.get("source")
target = r.get("target")
src = source.get("ref", "Unknown") if isinstance(source, dict) else str(source)
tgt = target.get("ref", "Unknown") if isinstance(target, dict) else str(target)
desc = r.get("description", "")
line = f" - {src} β {tgt}"
if desc:
line += f" | {desc}"
lines.append(line)
return "\n".join(lines).strip()
# === Inference Handler (GPT-4o only)
def process_image(image_file):
image = Image.open(image_file.name).convert("RGB")
result = gpt4o_pix2struct_ocr.run_model(image)
parsed_json = result.get("json")
raw_text = result.get("raw")
if parsed_json:
json_output = format_result_json(parsed_json)
pretty_output = format_pretty_view(parsed_json)
else:
json_output = "(No valid JSON extracted)"
pretty_output = "(No structured content extracted)\n\nβ οΈ Raw Model Output:\n" + raw_text
return image, json_output, pretty_output
# === Gradio Interface
iface = gr.Interface(
fn=process_image,
inputs=[gr.File(file_types=["image"], label="Upload a BPMN Diagram Image")],
outputs=[
gr.Image(label="π· Input Image"),
gr.Textbox(label="π§ Raw JSON Output", lines=20),
gr.Textbox(label="π Prettified View", lines=25)
],
title="π§© BPMN Extractor using GPT-4o + OCR",
description="Upload a BPMN diagram image. Extracts structured JSON using GPT-4o and Pix2Struct OCR. Runs on CPU-only Space.",
allow_flagging="never"
)
# === Launch without GPU
def main():
iface.launch(ssr=False)
if __name__ == "__main__":
main()
|