AP123 commited on
Commit
7c4604f
·
verified ·
1 Parent(s): b5fab8d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -43,22 +43,21 @@ def transform_image(face_image):
43
  else:
44
  raise ValueError("Unsupported image format")
45
 
46
- # Convert the processed face image to RGB format if it has only 1 channel
47
- if processed_face_image.mode == 'L':
48
- processed_face_image = processed_face_image.convert('RGB')
49
 
50
  # Resize the face image to 1024x1024
51
  processed_face_image = processed_face_image.resize(desired_size, Image.LANCZOS)
52
 
53
  # Load the style image from the local path, resize it to 1024x1024, and convert to tensor
54
  style_image_path = "examples/soyjak2.jpg" # Ensure this path is correct
55
- style_image = Image.open(style_image_path).resize(desired_size, Image.LANCZOS)
56
  style_image_tensor = transforms.ToTensor()(style_image).unsqueeze(0).to("cuda")
57
 
58
  # Perform the transformation using the configured pipeline
59
  image = pipeline(
60
  prompt="soyjak",
61
- ip_adapter_image=[style_image_tensor, processed_face_image], # Ensure these are tensors
62
  negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
63
  num_inference_steps=30,
64
  generator=generator,
 
43
  else:
44
  raise ValueError("Unsupported image format")
45
 
46
+ # Ensure the processed face image is in RGB format
47
+ processed_face_image = processed_face_image.convert('RGB')
 
48
 
49
  # Resize the face image to 1024x1024
50
  processed_face_image = processed_face_image.resize(desired_size, Image.LANCZOS)
51
 
52
  # Load the style image from the local path, resize it to 1024x1024, and convert to tensor
53
  style_image_path = "examples/soyjak2.jpg" # Ensure this path is correct
54
+ style_image = Image.open(style_image_path).resize(desired_size, Image.LANCZOS).convert('RGB')
55
  style_image_tensor = transforms.ToTensor()(style_image).unsqueeze(0).to("cuda")
56
 
57
  # Perform the transformation using the configured pipeline
58
  image = pipeline(
59
  prompt="soyjak",
60
+ ip_adapter_image=[style_image_tensor, transforms.ToTensor()(processed_face_image).unsqueeze(0).to("cuda")], # Ensure these are tensors
61
  negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
62
  num_inference_steps=30,
63
  generator=generator,