CerealBoxMaker / app.py
AP123's picture
Update app.py
0cd3e20
raw
history blame
1.97 kB
import gradio as gr
from PIL import Image
from PIL import ImageOps
import numpy as np
def create_cereal_box(input_image):
# Convert the input numpy array to PIL Image
cover_img = Image.fromarray((input_image.astype(np.uint8)))
# Load the template image
template_img = Image.open('CerealBoxMaker/template.jpeg')
# Define scaling factor for diagonal resizing
scaling_factor = 1.5
# Resize cover image
rect_height = int(template_img.height * 0.32)
new_width = int(rect_height * 0.70)
cover_resized = cover_img.resize((new_width, rect_height), Image.LANCZOS)
# Apply diagonal scaling
new_width_scaled = int(new_width * scaling_factor)
new_height_scaled = int(rect_height * scaling_factor)
cover_resized_scaled = cover_resized.resize((new_width_scaled, new_height_scaled), Image.LANCZOS)
# Positioning the resized cover image on the template
left_x = int(template_img.width * 0.085)
left_y = int((template_img.height - new_height_scaled) // 2 + template_img.height * 0.012)
left_position = (left_x, left_y)
right_x = int(template_img.width * 0.82) - new_width_scaled
right_y = left_y
right_position = (right_x, right_y)
# Create a copy of the template to paste on
template_copy = template_img.copy()
# Paste the resized and scaled cover image
template_copy.paste(cover_resized_scaled, left_position)
template_copy.paste(cover_resized_scaled, right_position)
# Convert the PIL Image back to a numpy array
template_copy_array = np.array(template_copy)
return template_copy_array
# Your existing Gr.Interface for the model that takes text and returns an image
iface = gr.Interface.load("models/ostris/super-cereal-sdxl-lora")
# Chain the existing interface with your new cereal box creation function
chained_iface = gr.Interface(create_cereal_box, inputs=iface.outputs, outputs="image")
# Launch the chained interface
chained_iface.launch()