import streamlit as st import yfinance as yf import matplotlib.pyplot as plt import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error st.title("Stockiza: Stock Price App") # Get user input for stock symbol stock_symbol = st.text_input("Enter a stock symbol:", "AAPL") # Add a button to fetch data fetch_button = st.button("Fetch Data") if fetch_button: try: # Fetch stock data using yfinance stock = yf.Ticker(stock_symbol) stock_info = stock.info # Display stock information st.subheader(f"{stock_info['longName']} ({stock_symbol})") # Check if 'currentPrice' key exists in stock_info if 'currentPrice' in stock_info: st.write(f"Current Price: ${stock_info['currentPrice']:.2f}") else: st.write("Current Price: Not available") # Check if other keys exist before accessing them if'regularMarketDayRange' in stock_info: st.write(f"Day's Range: ${stock_info['regularMarketDayRange']}") if 'fiftyTwoWeekRange' in stock_info: st.write(f"52-Week Range: ${stock_info['fiftyTwoWeekRange']}") if'regularMarketVolume' in stock_info: st.write(f"Volume: {stock_info['regularMarketVolume']:,.0f}") if'marketCap' in stock_info: st.write(f"Market Cap: ${stock_info['marketCap']:,.2f}") # Add a graph stock_data = stock.history(period="5y") fig, ax = plt.subplots() ax.plot(stock_data.index, stock_data["Close"]) ax.set_title(f"{stock_symbol} Stock Price") ax.set_xlabel("Date") ax.set_ylabel("Price ($)") st.pyplot(fig) # Prepare data for time series model stock_data['Date'] = pd.to_datetime(stock_data.index) stock_data['Year'] = stock_data['Date'].dt.year stock_data['Month'] = stock_data['Date'].dt.month stock_data['Day'] = stock_data['Date'].dt.day # Split data into training and testing sets X = stock_data[['Year', 'Month', 'Day']] y = stock_data['Close'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train a random forest regressor model model = RandomForestRegressor(n_estimators=100, random_state=42) model.fit(X_train, y_train) # Make predictions on the test set y_pred = model.predict(X_test) # Evaluate the model mse = mean_squared_error(y_test, y_pred) rmse = mse ** 0.5 st.write(f"Root Mean Squared Error (RMSE): {rmse:.2f}") # Use the model to predict the stock price 5 years from now future_date = pd.to_datetime('2027-12-31') future_data = pd.DataFrame({'Year': [future_date.year], 'Month': [future_date.month], 'Day': [future_date.day]}) future_price = model.predict(future_data) st.write(f"Predicted Price 5 Years from Now: ${future_price[0]:.2f}") except Exception as e: st.error(f"Error: {e}")