Spaces:
Sleeping
Sleeping
ANON STUDIOS 254
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import yfinance as yf
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import pandas as pd
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.ensemble import RandomForestRegressor
|
7 |
+
from sklearn.metrics import mean_squared_error
|
8 |
+
|
9 |
+
st.title("Stockiza: Stock Price App")
|
10 |
+
|
11 |
+
# Get user input for stock symbol
|
12 |
+
stock_symbol = st.text_input("Enter a stock symbol:", "AAPL")
|
13 |
+
|
14 |
+
# Add a button to fetch data
|
15 |
+
fetch_button = st.button("Fetch Data")
|
16 |
+
|
17 |
+
if fetch_button:
|
18 |
+
try:
|
19 |
+
# Fetch stock data using yfinance
|
20 |
+
stock = yf.Ticker(stock_symbol)
|
21 |
+
stock_info = stock.info
|
22 |
+
|
23 |
+
# Display stock information
|
24 |
+
st.subheader(f"{stock_info['longName']} ({stock_symbol})")
|
25 |
+
|
26 |
+
# Check if 'currentPrice' key exists in stock_info
|
27 |
+
if 'currentPrice' in stock_info:
|
28 |
+
st.write(f"Current Price: ${stock_info['currentPrice']:.2f}")
|
29 |
+
else:
|
30 |
+
st.write("Current Price: Not available")
|
31 |
+
|
32 |
+
# Check if other keys exist before accessing them
|
33 |
+
if'regularMarketDayRange' in stock_info:
|
34 |
+
st.write(f"Day's Range: ${stock_info['regularMarketDayRange']}")
|
35 |
+
if 'fiftyTwoWeekRange' in stock_info:
|
36 |
+
st.write(f"52-Week Range: ${stock_info['fiftyTwoWeekRange']}")
|
37 |
+
if'regularMarketVolume' in stock_info:
|
38 |
+
st.write(f"Volume: {stock_info['regularMarketVolume']:,.0f}")
|
39 |
+
if'marketCap' in stock_info:
|
40 |
+
st.write(f"Market Cap: ${stock_info['marketCap']:,.2f}")
|
41 |
+
|
42 |
+
# Add a graph
|
43 |
+
stock_data = stock.history(period="5y")
|
44 |
+
fig, ax = plt.subplots()
|
45 |
+
ax.plot(stock_data.index, stock_data["Close"])
|
46 |
+
ax.set_title(f"{stock_symbol} Stock Price")
|
47 |
+
ax.set_xlabel("Date")
|
48 |
+
ax.set_ylabel("Price ($)")
|
49 |
+
st.pyplot(fig)
|
50 |
+
|
51 |
+
# Prepare data for time series model
|
52 |
+
stock_data['Date'] = pd.to_datetime(stock_data.index)
|
53 |
+
stock_data['Year'] = stock_data['Date'].dt.year
|
54 |
+
stock_data['Month'] = stock_data['Date'].dt.month
|
55 |
+
stock_data['Day'] = stock_data['Date'].dt.day
|
56 |
+
|
57 |
+
# Split data into training and testing sets
|
58 |
+
X = stock_data[['Year', 'Month', 'Day']]
|
59 |
+
y = stock_data['Close']
|
60 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
61 |
+
|
62 |
+
# Train a random forest regressor model
|
63 |
+
model = RandomForestRegressor(n_estimators=100, random_state=42)
|
64 |
+
model.fit(X_train, y_train)
|
65 |
+
|
66 |
+
# Make predictions on the test set
|
67 |
+
y_pred = model.predict(X_test)
|
68 |
+
|
69 |
+
# Evaluate the model
|
70 |
+
mse = mean_squared_error(y_test, y_pred)
|
71 |
+
rmse = mse ** 0.5
|
72 |
+
st.write(f"Root Mean Squared Error (RMSE): {rmse:.2f}")
|
73 |
+
|
74 |
+
# Use the model to predict the stock price 5 years from now
|
75 |
+
future_date = pd.to_datetime('2027-12-31')
|
76 |
+
future_data = pd.DataFrame({'Year': [future_date.year], 'Month': [future_date.month], 'Day': [future_date.day]})
|
77 |
+
future_price = model.predict(future_data)
|
78 |
+
st.write(f"Predicted Price 5 Years from Now: ${future_price[0]:.2f}")
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
st.error(f"Error: {e}")
|