import gradio as gr import matplotlib.pyplot as plt import numpy as np import os import PIL import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.models import Sequential import gdown import zipfile import pathlib # Define the Google Drive shareable link gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link' # Extract the file ID from the URL file_id = gdrive_url.split('/d/')[1].split('/view')[0] direct_download_url = f'https://drive.google.com/uc?id={file_id}' # Define the local filename to save the ZIP file local_zip_file = 'file.zip' # Download the ZIP file gdown.download(direct_download_url, local_zip_file, quiet=False) # Directory to extract files extracted_path = 'extracted_files' # Verify if the downloaded file is a ZIP file and extract it try: with zipfile.ZipFile(local_zip_file, 'r') as zip_ref: zip_ref.extractall(extracted_path) print("Extraction successful!") except zipfile.BadZipFile: print("Error: The downloaded file is not a valid ZIP file.") # Optionally, you can delete the ZIP file after extraction os.remove(local_zip_file) # Convert the extracted directory path to a pathlib.Path object data_dir = pathlib.Path(extracted_path) # Print the directory structure to debug for root, dirs, files in os.walk(extracted_path): level = root.replace(extracted_path, '').count(os.sep) indent = ' ' * 4 * (level) print(f"{indent}{os.path.basename(root)}/") subindent = ' ' * 4 * (level + 1) for f in files: print(f"{subindent}{f}") # Path to the dataset directory data_dir = pathlib.Path('extracted_files/Pest_Dataset') image_count = len(list(data_dir.glob('*/*.jpg'))) print(image_count) bees = list(data_dir.glob('bees/*')) print(bees[0]) PIL.Image.open(str(bees[0])) batch_size = 32 img_height = 180 img_width = 180 train_ds = tf.keras.utils.image_dataset_from_directory( data_dir, validation_split=0.2, subset="training", seed=123, image_size=(img_height, img_width), batch_size=batch_size) val_ds = tf.keras.utils.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names print(class_names) plt.figure(figsize=(10, 10)) for images, labels in train_ds.take(1): for i in range(9): ax = plt.subplot(3, 3, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off") for image_batch, labels_batch in train_ds: print(image_batch.shape) print(labels_batch.shape) break AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) normalization_layer = layers.Rescaling(1./255) normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y)) image_batch, labels_batch = next(iter(normalized_ds)) first_image = image_batch[0] # Notice the pixel values are now in `[0,1]`. print(np.min(first_image), np.max(first_image)) data_augmentation = keras.Sequential( [ layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)), layers.RandomRotation(0.1), layers.RandomZoom(0.1), layers.RandomContrast(0.1), ] ) plt.figure(figsize=(10, 10)) for images, _ in train_ds.take(1): for i in range(9): augmented_images = data_augmentation(images) ax = plt.subplot(3, 3, i + 1) plt.imshow(augmented_images[0].numpy().astype("uint8")) plt.axis("off") from tensorflow.keras.applications import EfficientNetB0 base_model = EfficientNetB0(weights='imagenet', include_top=False, input_shape=(img_height, img_width, 3)) # Freeze the pre-trained weights base_model.trainable = False # Create new model on top inputs = keras.Input(shape=(img_height, img_width, 3)) x = data_augmentation(inputs) # Apply data augmentation x = base_model(x, training=False) x = keras.layers.GlobalAveragePooling2D()(x) x = keras.layers.Dropout(0.2)(x) outputs = keras.layers.Dense(len(class_names), activation='softmax')(x) # Compile the model model = keras.Model(inputs, outputs) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() # Train the model epochs = 10 history = model.fit( train_ds, validation_data=val_ds, epochs=epochs ) # Plot training history acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) plt.figure(figsize=(8, 8)) plt.subplot(1, 2, 1) plt.plot(epochs_range, acc, label='Training Accuracy') plt.plot(epochs_range, val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, label='Training Loss') plt.plot(epochs_range, val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show() test_ds = tf.keras.utils.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size) results = model.evaluate(test_ds, verbose=0) print(" Test Loss: {:.5f}".format(results[0])) print("Test Accuracy: {:.2f}%".format(results[1] * 100)) # Metrics y_true = [] y_pred = [] for images, labels in test_ds: y_true.extend(labels.numpy()) preds = model.predict(images) y_pred.extend(np.argmax(preds, axis=1)) from sklearn.metrics import classification_report, confusion_matrix print(classification_report(y_true, y_pred, target_names=class_names)) import pandas as pd report = classification_report(y_true, y_pred, target_names=class_names, output_dict=True) df = pd.DataFrame(report).transpose() print(df) def make_confusion_matrix(y_true, y_pred, labels): cm = confusion_matrix(y_true, y_pred) fig, ax = plt.subplots(figsize=(10, 8)) cax = ax.matshow(cm, cmap=plt.cm.Blues) plt.title('Confusion Matrix') fig.colorbar(cax) ax.set_xticklabels([''] + labels, rotation=90) ax.set_yticklabels([''] + labels) plt.xlabel('Predicted') plt.ylabel('True') plt.show() make_confusion_matrix(y_true, y_pred, class_names) def predict_image(img): img = np.array(img) img_resized = tf.image.resize(img, (180, 180)) img_4d = tf.expand_dims(img_resized, axis=0) prediction = model.predict(img_4d)[0] return {class_names[i]: float(prediction[i]) for i in range(len(class_names))} image = gr.Image(type="pil") label = gr.Label(num_top_classes=12) # Define custom CSS for background image custom_css = """ body { background-image: url('/extracted_files/Pest_Dataset/bees/bees (444).jpg'); background-size: cover; background-repeat: no-repeat; background-attachment: fixed; color: white; } """ gr.Interface( fn=predict_image, inputs=image, outputs=label, title="PestScout: An Agricultural Pest Image Classification System Using Convolutional Neural Networks", description="Upload an image of a pest to classify it into one of the predefined categories.", css=custom_css ).launch(debug=True)