import os import zipfile import gdown import pathlib import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.models import Sequential import matplotlib.pyplot as plt import gradio as gr import numpy as np # Define the Google Drive shareable link gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link' # Extract the file ID from the URL file_id = gdrive_url.split('/d/')[1].split('/view')[0] direct_download_url = f'https://drive.google.com/uc?id={file_id}' # Define the local filename to save the ZIP file local_zip_file = 'file.zip' # Download the ZIP file gdown.download(direct_download_url, local_zip_file, quiet=False) # Directory to extract files extracted_path = 'extracted_files' # Verify if the downloaded file is a ZIP file and extract it try: with zipfile.ZipFile(local_zip_file, 'r') as zip_ref: zip_ref.extractall(extracted_path) print("Extraction successful!") except zipfile.BadZipFile: print("Error: The downloaded file is not a valid ZIP file.") # Optionally, you can delete the ZIP file after extraction os.remove(local_zip_file) # Convert the extracted directory path to a pathlib.Path object data_dir = pathlib.Path('extracted_files/Pest_Dataset') # Verify the directory structure for root, dirs, files in os.walk(extracted_path): level = root.replace(extracted_path, '').count(os.sep) indent = ' ' * 4 * (level) print(f"{indent}{os.path.basename(root)}/") subindent = ' ' * 4 * (level + 1) for f in files: print(f"{subindent}{f}") # Set image dimensions and batch size img_height, img_width = 180, 180 batch_size = 32 # Create training and validation datasets train_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="training", seed=123, image_size=(img_height, img_width), batch_size=batch_size ) val_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size ) class_names = train_ds.class_names print(class_names) # Display some sample images plt.figure(figsize=(10, 10)) for images, labels in train_ds.take(1): for i in range(9): ax = plt.subplot(3, 3, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off") # Enhanced data augmentation data_augmentation = keras.Sequential( [ layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)), layers.RandomRotation(0.2), layers.RandomZoom(0.2), layers.RandomContrast(0.2), layers.RandomBrightness(0.2), ] ) # Display augmented images plt.figure(figsize=(10, 10)) for images, _ in train_ds.take(1): for i in range(9): augmented_images = data_augmentation(images) ax = plt.subplot(3, 3, i + 1) plt.imshow(augmented_images[0].numpy().astype("uint8")) plt.axis("off") # Define a deeper CNN model with more regularization techniques num_classes = len(class_names) model = Sequential() model.add(data_augmentation) model.add(layers.Rescaling(1./255)) model.add(layers.Conv2D(32, 3, padding='same', activation='relu', kernel_regularizer=keras.regularizers.l2(0.001))) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D()) model.add(layers.Conv2D(64, 3, padding='same', activation='relu', kernel_regularizer=keras.regularizers.l2(0.001))) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D()) model.add(layers.Conv2D(128, 3, padding='same', activation='relu', kernel_regularizer=keras.regularizers.l2(0.001))) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D()) model.add(layers.Conv2D(256, 3, padding='same', activation='relu', kernel_regularizer=keras.regularizers.l2(0.001))) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D()) model.add(layers.Conv2D(512, 3, padding='same', activation='relu', kernel_regularizer=keras.regularizers.l2(0.001))) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D()) model.add(layers.Dropout(0.5)) model.add(layers.Flatten()) model.add(layers.Dense(256, activation='relu', kernel_regularizer=keras.regularizers.l2(0.001))) model.add(layers.Dropout(0.5)) model.add(layers.Dense(num_classes, activation='softmax', name="outputs")) model.compile(optimizer=keras.optimizers.Adam(learning_rate=1e-4), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics=['accuracy']) model.summary() # Implement early stopping from tensorflow.keras.callbacks import EarlyStopping early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True) # Train the model epochs = 30 history = model.fit( train_ds, validation_data=val_ds, epochs=epochs, callbacks=[early_stopping] ) # Define category descriptions category_descriptions = { "Ants": "Ants are small insects known for their complex social structures and teamwork.", "Bees": "Bees are flying insects known for their role in pollination and producing honey.", "Beetles": "Beetles are a group of insects with hard exoskeletons and wings. They are the largest order of insects.", "Caterpillars": "Caterpillars are the larval stage of butterflies and moths, known for their voracious appetite.", "Earthworms": "Earthworms are segmented worms that are crucial for soil health and nutrient cycling.", "Earwigs": "Earwigs are insects with pincers on their abdomen and are known for their nocturnal activity.", "Grasshoppers": "Grasshoppers are insects known for their powerful hind legs, which they use for jumping.", "Moths": "Moths are nocturnal insects related to butterflies, known for their attraction to light.", "Slugs": "Slugs are soft-bodied mollusks that are similar to snails but lack a shell.", "Snails": "Snails are mollusks with a coiled shell, known for their slow movement and slimy trail.", "Wasps": "Wasps are stinging insects that can be solitary or social, and some species are important pollinators.", "Weevils": "Weevils are a type of beetle with a long snout, known for being pests to crops and stored grains." } # Define the prediction function def predict_image(img): img = np.array(img) img_resized = tf.image.resize(img, (180, 180)) img_4d = tf.expand_dims(img_resized, axis=0) prediction = model.predict(img_4d)[0] predicted_class = np.argmax(prediction) predicted_label = class_names[predicted_class] predicted_description = category_descriptions[predicted_label] return {predicted_label: f"{float(prediction[predicted_class]):.2f} - {predicted_description}"} # Set up Gradio interface image = gr.Image() label = gr.Label(num_top_classes=1) # Define custom CSS for background image custom_css = """ body { background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg'); background-size: cover; background-repeat: no-repeat; background-attachment: fixed; color: white; } """ gr.Interface( fn=predict_image, inputs=image, outputs=label, title="Welcome to Agricultural Pest Image Classification", description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils", css=custom_css ).launch(debug=True)